内蒙古晚始新世兔形类

王伴月

（中国科学院古脊椎动物与古人类研究所 北京 100044）

摘要：记述了采自内蒙古二连浩特、额尔登敖包、扎木敖包和察右前旗等地上的始新统的兔形类化石：Desmatolagus vetustus, Gobiolagus toimachoni 和 Leporidae indet。对前两种以前未知的品种作了补充描述。着重讨论了额尔登敖包地点的“下白层”的归属和时代，认为它属乌兰戈楚组，时代为晚始新世。

关键词：内蒙古，晚始新世，兔形类

中图法分类号：Q915.873 文献标识码：A 文章编号：1000-3118(2007)01-0043-16

颊齿冠面结构诸要素的名称主要依 Wood (1940)，中文译名主要依李传夔 (1965)，并稍加增改。文中缩写：AMNH, 美国纽约自然历史博物馆；Field no. 美国纽约自然历史博物馆中亚考察团野外编号；IVPP, 中国科学院古脊椎动物与古人类研究所；IVPP Loc., 中国科学院古脊椎动物与古人类研究所野外地点编号；IVPP V 中国科学院古脊椎动物与古人类研究所脊椎动物化石编号。

1) 1) 国家自然科学基金重点项目（编号：40232023）资助。
1 系统描述

兔形目 Lagomorpha Brandt, 1855
短耳兔科 Ochotonidae Thomas, 1897
链兔 Desmatolagus Matthew & Granger, 1923
年迈链兔 Desmatolagus vetustus Burke, 1941

标本 1P2 (IVPP V 14759.1), 1P3 (V 14759.2), 4P4 (V 14759.3~5, V 14760.1), 13M1/2 (V 14759.6~14, V 14760.2~5), 2M3 (V 14759.15~16), 2p3 (V 14759.17, V 14760.6), 1p4 (V 14760.7), 7m1 (V 14759.18~23, V 14760.8), 4m2 (V 14759.24~25, V 14760.9~10), 和 1m3 (V 14759.26).

地点和层位 内蒙古二连浩特火车站东 IVPP Loc. 1988001, 上始新统呼尔井组 (V 14759); 乌兰察布盟四子王旗额尔登敖包 IVPP Loc. 1991004, 上始新统乌兰戈楚组 “下白层” (V 14760).

记述 标本均为单个颌齿。颊齿齿冠较低。P2 冠面为卵圆形具 3 叶。外叶 (= 后附尖) 最低小。中叶 (= 中央尖) 最高大, 呈内外前内向延伸, 其后外端与外叶相连。内叶 (= 内侧尖) 纵向伸长。后边脊连接外叶和内叶。唇侧谷较淡而开阔, 中央谷 (= 新月谷 CV) 较深, 为圆齿。单齿根, 共前、后纵沟。P3 只有 1 枚, 其内外侧叶破损。中叶稍大于外叶, 呈内外前内向延伸, 其后外端与外叶连。唇侧谷较浅而开阔, 中央谷较深, 也呈内外前内向延伸。具 2 齿根, 其外齿根前外和后内侧也各具一纵沟。P4 具小而明显的后附尖, 无明显前尖。V 形的中央谷的两端分别与后附尖和前边脊相连。舌侧尖最大, 在磨蚀较少的幼年个体 (V 14760.1, 图 1C), 其内侧有明显的次沟。可见原尖小于次尖。而在磨蚀较深的个体 (V 14759.4), 次沟消失。前边脊和后边脊均完全, 唇侧谷和中央谷均为封闭的。内侧齿根单一, 粗大, 外侧齿根不明。

M1 和 M2 的冠面形态结构同样, 因现有标本均为单个牙齿, 很难确定其在上颌骨上的位置, 在此将其笼统称为 M1/2。M1/2 舌侧齿冠仅稍高于颊侧的。其冠面结构随着磨蚀程度的不同而变化。在磨蚀较少的幼年个体 (V 14759.6, 图 1D), 其舌侧谷很长, 向后外方延伸达齿的后外角, 将三角座和跟座分开。三角座较跟座高, 原尖大于次尖, 与前边脊和中央尖相连形成 V 形脊。中央尖的颊端转向前弯, 与前尖连, 因此中央谷为颊侧前后压扁的卵圆形的盆。在磨蚀较深的 M1/2 中, 中央尖中部与后边脊, 原尖与次尖分别相连, 将舌侧谷分为两部分; 内侧为卵圆形坑, 外侧仍为较长的横向沟谷。中央谷变小, 保留了外侧部分。M1/2 舌侧仍有明显的次沟。随着下齿进一步磨蚀, 冠面的大部分结构已磨蚀掉了, 只在颊侧留有中央谷和舌侧谷外端的痕迹, 舌侧的次沟也消失了。具 3 齿根, 内者单一, 粗壮, 外 2 齢根细小。M3 退化变小, 冠面卵圆形。三角座与 M1/2 的相似, 明显高于跟座, 但中央尖退化。跟座非常退化, 仅可见极弱小的次尖或弱脊。齿根单一, 前后压宽。

p3 约成浑圆的三角柱形, 往齿冠基部稍增大。磨蚀后的 p3 (V 14760.6) 的冠面为三叶形, 具较深的下次沟和较浅而开阔的前舌侧沟。从侧面看, 下次沟向下几乎伸达齿根。
处，前舌侧沟往下消失较快。未磨蚀的 p3（V 14759. 17，图 1G）的冠面有 3 个褶，上艾次
下次沟和前舌侧沟外，在舌侧还有一后舌侧沟与下次沟相对，使冠面约像“上”字形。从
冠面看，该后舌侧沟横向的宽度虽与下次沟相近，但在侧面向下即迅速变浅消失。因此，
p3 稍微磨蚀后，后舌侧沟就消失了，只保存有下次沟和前舌侧沟。

中间的下颊齿 (p4, ml 和 m2) 在形态结构上彼此很相似。无明显的单面高冠现象。
下次沟与下内沟很近，几乎呈达齿冠基部。下次沟较开裂，下内沟较狭窄。在颊齿磨损较深时，下
跟座舌侧不与下三角座连。下三角座较宽。颊质层在其内、后、外侧较厚，在后缘近中部有一明显的向后
突的尖突。下跟座较短而窄，冠面约为颊侧尖突，舌缘和后缘约为圆弧形的三角形。颊质层也
在其内、后、外缘加厚，只是后缘在与其后的牙齿接触处变薄。在磨蚀较少的幼年个体，跟座舌侧有一褶
沟，显示其第三叶的存在。m3 的冠面形图 1 年迈链兔 (Desmatolagus vetustus) 和兔科 (属、种未定) 颊齿冠面

Fig. 1 Occlusal view of cheek teeth of Desmatolagus vetustus and Loporidae gen. et sp. indet.

A ~ K. Desmatolagus vetustus. A. RP2 (V 14759. 1); B. RP3 (V 14759. 2); C. RP4 (V 14760. 1); D.
LM1/2 (V 14759. 6); E. LM1/2 (V 14759. 9); F. LM3 (V 14759. 15); G. Lp3 (V 14759. 17); H. Lp4
(V 14760. 7); I. Lm1 (V 14759. 18); J. Lm2 (V 14759. 24); K. Rm3 (V 14759. 26); L. Loporidae gen.
et sp. indet., Rm3 (V 14763. 1)
态结构与中间的颊齿相似，但明显退化变小，特别是下跟座退化变小为卵圆形。

上面的描述表明，内蒙古的标本应属 *Desmatolagus*，其共有的特点是：P2 和 P3 的中叶呈后外 - 前内向延伸；下颊齿向内沟向延伸的程度与下次沟的相近，下三角座后缘中部稍向后突，p4 ~ m2 下跟座具明显的第三叶等。*Desmatolagus* 属已知包括 *D. vetustus, D. gobienesis*, *D. robustus*, *D. ardynensis* 和 *D. pusillus* 5 种（Matthew and Granger, 1923；Burke, 1941；黄学诗, 1987）。内蒙古的标本在颊齿齿冠较矮和 p3 有舌、颊侧沟的特征上与 *D. vetustus* 者一致，而与后 4 种的不同。此外，它们的颊齿尺寸要比 *D. ardynensis* 和 *D. robustus* 的小得多。

加之，额尔登敖包和二连浩特的下跟座后缘不成直线，而成弧线，这一点也与 *D. vetustus* 的相似。因此，笔者将额尔登敖包和二连浩特的标本均归入 *D. vetustus*。

表 1 年迈链齿 (*Desmatolagus vetustus*) 颊齿测量

| 古脊椎动物学报 | 45卷 |

| Table 1 Measurements of cheek teeth of *Desmatolagus vetustus* (mm) |

<table>
<thead>
<tr>
<th></th>
<th>Eerenhot</th>
<th></th>
<th>Utryn Obo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>1.7</td>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>P4</td>
<td>2</td>
<td>1.7 ~ 2.3</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>P4</td>
<td>1</td>
<td>1.3 ~ 1.8</td>
<td>3</td>
<td>1.1 ~ 1.5</td>
</tr>
<tr>
<td>M1/2</td>
<td>4</td>
<td>1.3 ~ 1.8</td>
<td>5</td>
<td>2.7 ~ 4.6</td>
</tr>
<tr>
<td>M3</td>
<td>2</td>
<td>0.9</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>M3</td>
<td>2</td>
<td>1.4 ~ 1.9</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>p3</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>p3</td>
<td>1</td>
<td>1.6</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>p4</td>
<td>1</td>
<td>1.5 +</td>
<td>1</td>
<td>1.5 +</td>
</tr>
<tr>
<td>p4 L/W (tr)</td>
<td>1</td>
<td>0.8 / 1.9</td>
<td>1</td>
<td>0.8 / 1.5</td>
</tr>
<tr>
<td>p4 L/W (tal)</td>
<td>1</td>
<td>1.8 ~ 2.4</td>
<td>1</td>
<td>1.7 ~ 1.8</td>
</tr>
<tr>
<td>m1</td>
<td>4</td>
<td>1.0 ~ 1.2 / 1.5 e ~ 2.5</td>
<td>2</td>
<td>0.8 / 2.2 ~ 2.3</td>
</tr>
<tr>
<td>m1 L/W (tal)</td>
<td>4</td>
<td>0.9 ~ 1.1 / 1.1 e ~ 1.8</td>
<td>2</td>
<td>0.9 ~ 1.1 / 1.6 ~ 1.8</td>
</tr>
<tr>
<td>m2</td>
<td>2</td>
<td>1.0 / 1.7 e + 2</td>
<td>1</td>
<td>1.4 / 1.9</td>
</tr>
<tr>
<td>m2 L/W (tr)</td>
<td>1</td>
<td>1.0 / 1.7 e + 2</td>
<td>1</td>
<td>1.4 / 1.9</td>
</tr>
<tr>
<td>m3</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>m3 W (tr)</td>
<td>1</td>
<td>0.7</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>m3 W (ta)</td>
<td>1</td>
<td>0.7</td>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

注意：Abbreviations；L. 长 length; W. 宽 width; tal. 下跟座 talonid; tr. 下三角座 trigonid; N. 标本数 Number; R. 变异范围 Range.
兔科 Leporidae Fischer de Waldheim, 1817
戈壁兔 Gobiolagus Burke, 1941
托氏戈壁兔 Gobiolagus tolmachovi Burke, 1941
（图2;表2）

Gobiolagus andrewsi Burke, 1941: 8 ~ 10, fig. 4
Gobiolagus andrewsi Meng et al., 2005: 11, fig. 1(2), 6

标本 一段左上颌骨具 P3 ~ P4 和左下颌骨具 p4 ~ m2 (AMNH 94703), 4P2 (IVPP V 14761.1 ~ 4), 9P3 (V 14761.5 ~ 12, V 14762.1), 3P4 (V 14761.13 ~ 15), 3DP3 (V 14761.16 ~ 18), 一段左上颌骨具 M1 ~ 2 (V 14761.19), 7M1/2 (V 14761.20 ~ 25, V 14762.2), 1M3 (V 14761.26), 2 段左下颌骨分别具 p3, m2 (V 14762.3) 和 m1 ~ 2 (V 14762.4), 5M1 (V 14761.27 ~ 31), 5M2 (V 14761.32 ~ 34, V 14762.5 ~ 6), 1M3 (V 14761.35) 和 3dp4 (V 14761.36 ~ 38)。

地点和层位 内蒙古二连浩特火车站东 IVPP Loc. 1988001, 上始新统响尔井组 (V 14761); 四子王旗扎木敖包, 乌兰戈楚组 (AMNH 94703, Field no. 674); 阿拉善左旗蒙郭布尔都盆地绿根扎大盖 IVPP Loc. 1974097 (1994 ~ 1), 上始新统查干布拉格组第三层 (V 14762)。

记述 顶弓前根前缘的棱脊约位于 P3 后缘外方, 其前有明显的窝。顶弓前根的后缘位于 M1 外方。上颊齿列成明显向外凸的弧形。下颌骨水平支较粗大, 由 p4 往前横向明显变窄。水平支颊侧见一颊孔位于 p4 下方。咬肌窝前缘达 m3 的下方, 其前端有明显的肿状的隆起位于 m2 下方。这些特征均与 Gobiolagus tolmachovi 的一致。

颊齿为明显的单面高冠。在 Gobiolagus 已知的种中, 还未见有 P2 齿冠特征的报道。惟可能显示其特征的是孟津等 (2005) 描述的, 归入 Gobiolagus tolmachovi 的一上领骨 (AMNH 141295)。该标本保存有 P2 的齿根部分。从该齿根断面看, P2 具三叶, 其中叶明显向前突。在二连浩特采集的标本中, 有 5 枚 P2, 其中有一枚 (V 14759.1) 属 Desmatolagus（见上）, 其余 4 枚 P2 的冠面前的基本特征与 Desmatolagus 的不同, 而与 Gobiolagus 的 P3 的相似, 很可能属 Gobiolagus。它的 P2 虽与 Desmatolagus 的有些相似, 如其冠面也为卵圆形, 也具 3 叶, 外叶最低小, 中叶最高大, 后边脊完全, 唇侧谷较浅而开阔等。但它的中叶显得更高大, 而且主要向前延伸, 不像 Desmatolagus 的那样斜向前内方伸; 内叶虽也纵向延伸, 但相对比 Desmatolagus 的短; 中央谷相对较浅, 较开阔; 其齿根虽单一, 但无纵沟。

P3 ~ M2 的舌侧冠段明显高于颊侧。P3 的冠面为横宽的卵圆形, 具 3 叶。外叶最小, 内叶最大。中叶主要向前伸, 在幼年较少磨蚀时其后端转向外伸, 与外叶连; 但较多磨蚀后则显出与后边脊连。后边脊完全。有 5 枚 P3 (V 14761.5 ~ 7, 9, 11) 无前边脊的痕迹, 但在另 4 枚 P3 (V 14761.8, 10, V 14762.1 和 AMNH 94703) 有低而短小的前边脊。这一区别或者代表种内不同个体的变异, 也有可能代表不同种的特点, 因它们的其他形态特征基本相同, 这里采取前一种可能性, 暂时将它们均归人此种。唇侧谷较浅、较开阔。中央谷较窄, 较深, 成弧形向后方侧伸。内叶舌侧无明显的次沟。具 2 根齿, 舌侧者较粗
壮，颊侧齿根较小，通常不分叉（7/8）。

P4 具 2 唇侧尖，后附齿明显较前尖高大，两尖间有较细的外脊连。中央尖约半月弧形，连结前边脊和后附尖。在磨蚀较深的 P4 上，中央尖的后端显得与后边脊连。舌侧尖很粗大，无次沟。前边脊和后边脊均完全，将唇侧谷和中央谷封闭。唇侧谷近卵圆形，较浅，中央谷为深的弧形谷。P4 具 2 齿根，舌侧者很粗壮，颊侧者较细，不分叉。

在已有的标本中，仅 V 14761.19 保存有 M1 和 M2，其余的 M1 和 M2 均为单个牙齿。从 V 14761.19 可以明显看出，M1 和 M2 的冠面形态彼此很相似，要确定单个齿在上颌骨上的位置是很难的。因此，除 V 14761.19 外，笔者将其他的 M1 或 M2 均笼统称为 M1/2。M1/2 为明显的单面高冠，舌侧齿冠显著高于颊侧的。幼年较少磨蚀的 M1/2 的冠面形态与 Desmatolagus vetustus 的 M1/2 很相似；三角座和跟座被长的舌侧谷分开，三角座高于跟座，原尖大于次尖；中央谷为卵圆形；次尖与后边脊连等。所不同的是 Gobiolagus 的中央谷较明显突出，在有的 M1/2（V 14761.22）上还有小脊与后边脊连，中央尖外端不向前弯，而是与外脊近中部连。因此，中央谷的颊面不如有 Desmatolagus vetustus 的那样前后压缩。磨蚀较深的 M1/2 的舌侧谷也被分成两部分，内侧为卵圆形的坑，外侧为较长的沟谷。中央谷的内侧大部分也消失，但舌侧次沟仍很明显。在较古老个体，当舌侧谷内侧的卵圆形坑磨蚀掉后，仍可见中央谷和舌侧谷外端的痕迹和明显的次沟。只是在冠面结构完全磨蚀掉的 M1/2 上，才未见次沟。在从二连浩特采集的标本中，还有一枚破的上臼齿（V 14762.26，图 2G）。它只保存了三角座的后半部和跟座部分。它的形态与 M1/2 的相似，但其外缘特别向后倾斜，与其后缘的夹角很大，比上述的 M1/2 的大得多。这表明其后部横向较三角座的窄，较 M1/2 退化。它很可能是 M3。

下颊齿颊侧齿冠明显高于舌侧。只有一枚正在萌出的 p3（V 14762.3，图 2H），其冠面的结构保存很完全。具有的下三角座和较低的下跟座。下三角座约成 V 形，其前臂较粗短，后臂较长。下原尖最高，下后尖较小。下三角座向舌侧开口，形成前舌侧沟，其横向沟宽，往齿冠基部逐渐变浅。在冠面，下三角座与下跟座间有一明显的横沟连接较深的下次沟和较浅的下内沟。下内尖较下后尖低，下次尖最低。由于下内尖伸出的横脊将下跟座分成两部分，其后部较低，组成第三叶。第三叶及其前的沟都很浅，磨蚀后很快消失。从颊侧看，下三角座齿冠基部逐渐膨大，前后加长，下次沟逐渐加深，位置逐渐后移，下跟座逐渐变短（图 2K）。

p4 ~ m3 的下次沟明显较下内沟的开阔，而且上下长很多。在磨蚀较少的标本上（如 V 14762.3 ~ 6 等），仍保留有下内沟，下跟座的齿质并不与下三角座的连，只是在磨蚀较深的标本上，下内沟才消失，其下跟座的齿质才与下三角座的连。p4 下三角座冠面约成梨形，颊侧圆凸，前后较长，舌侧前前后缩短。釉质层仅在其前缘较薄，在其余 3 面均较厚。下跟座退化变小，釉质层也相对较薄。在 AMNH 94703 的磨蚀阶段，其下次沟很发育，几乎伸达齿根。而下内沟已消失，因此，下跟座的齿质的舌端已与下三角座的相连。

m1 下三角座也约成梨形，其颊端前后虽较 p4 的压缩，但仍较舌侧的长。下跟座约成三角形，其长仍稍小于下三角座的。m2 的下三角座颊端前后进一步压缩，与舌侧的相近，均较尖，使冠面约成菱形。下跟座进一步加大，其长明显大于下三角座。在未磨蚀的 m2 的下跟座冠面可见一些小尖；向外尖的下次尖，下内尖被分为 2 小尖，前缘和近后缘
处各有一横排小尖。下跟座后缘稍低。m3 较中间颊齿退化变小。因冠面磨损，结构不清楚。但可见下三角座与下跟座的齿质在舌侧相连（图 2I）。m1 - 3 均为单齿根，其内、外侧有纵沟。

在二连浩特采集的兔形类标本中有 3 枚 DP3 和 3 枚 dp4。到目前为止，还未见有 Gobiolagus 的乳齿的报道，而且我们的乳齿均为单个牙齿，没有与恒齿连在一起的标本，要判断它们的归属的确很困难。好在 Tobien（1986）曾报道过 Desmatolagus 的乳齿。而我们在二连浩特采集的兔形类标本中，比较肯定的主要是 Gobiolagus 和 Desmatolagus 两个属。这些 DP3 和 dp4 显然与 Desmatolagus 的不同，因此将它们均暂时归属于 Gobiolagus 属。

DP3 冠面约呈四边形，前缘窄于后缘，颊侧长于舌侧，颊缘明显凹人。舌侧齿冠明显高于颊侧。舌侧尖最大，磨蚀后形成宽而稍凹的面。其舌侧有浅的次沟。后附尖较中央尖大。中央尖明显向前伸。后边脊完全，其颊端与后附尖连，但比后附尖低小。前边脊向颊侧伸达中央尖的前外方。中央脊弧形，其前外端与浅的副脊谷相通。具 3 根齿，舌侧者粗大，2 颊侧者小。此 DP3 明显不同于 Desmatolagus 的 DP3，后者的中央尖为弧形，其前端向前外方伸，后附尖很小，相反，后边脊颊端却较后附尖膨大，明显向外方突出，超过后附尖，因此其 DP3 的颊侧凹比 Gobiolagus 的深（Tobien，1986，p. 224，fig. 2）。

二连浩特的 3 枚 dp4 均磨蚀较深，冠面结构不清楚，但均可见下三角座高于下跟座。从保存较好的 dp4（V 14761. 36，图 2I）看，其下三角座和下跟座的形态很相似，均约成舌侧前后较压缩，颊侧稍长的菱形，下三角座稍宽于下跟座。这些特征显然与 Desmatolagus 的不同。后者的 dp4 的下三角座较窄，下跟座较宽，与有后猾等（Tobien，1986）。

综上所述，这些颊齿为明显的单面高冠型，上颊齿舌侧齿冠显著高于颊侧者，下颊齿的颊侧齿冠大高于舌侧者，下内沟很短，经磨蚀后较快消失，使下跟座舌端的齿质与下跟座的连。p3 为三叶形。p4 的下三角座约半梨形，颊侧较长而圆凸，下跟座退化。m1 下三角座也成多梨形，但较 p4 的弱。m2 为下颊齿中最大者，下跟座长于下三角座等。这些颊齿特征也均与 Gobiolagus 的一致。Gobiolagus 目前已知包括 5 种：G. tolmachowi，G. andrewsi，G. major，G. lii 和 G. burkei（Burke，1941；Zhang et al.，2001；Meng et al.，2005）。与这 5 种比较，内蒙古的颊齿尺寸明显小于 G. major 的，大于 G. lii 和 G. burkei 的，而与 G. tolmachowi 和 G. andrewsi 的相近（见表 2）。Burke（1941）在建立 G. tolmachowi 和 G. andrewsi 时认为此两种的区别在于 G. andrewsi 的 p3 横向较窄和前舌侧沟的位置较 G. tolmachowi 的靠后，与下次沟相称等。内蒙古的标本 p3 的形态结构在未磨蚀时虽很像 Shamolagus 的，但经磨蚀后则更像 G. tolmachowi，因此将内蒙古的标本归入此种。这似乎也表明 Gobiolagus 的 p3 有可能是由类似 Shamolagus 的 p3 齿冠增高演化而成。

图 2 托氏戈壁兔（Gobiolagus tolmachowi）颊齿和下颌骨
Fig. 2 Cheek teeth and lower jaw of Gobiolagus tolmachowi
A～J. 颊齿冠面 occlusal view (同一比例尺, same scale), A. RDP3 (V 14761.16); B. RP2 (V 14761.2); C. RP3 (V 14761.6); D. LP4 (V 14761.14); E. RM1/2 (V 14762.2); F. LP4 ~ m2 (AMNH 94703); G. RM3? (V 14761.26); H. LP3 (V 14762.2); I. Rm3 (V 14761.35); J. Ldp4 (V 14761.36);
K. 左下颌骨侧面 lateral view of left lower jaw (V 14762.3)

是 G. tolmachowi 的后出同物异名的意见。关于该两种的时代分布, G. tolmachowi 产出的地层时代为晚中新世沙拉木仑期，而 G. andrewsi 的时代为晚始新世乌兰戈楚期。如果关
于上述 2 种为同物异名有道理的话，G. tolmachovi 的时代分布应为从晚中始新世到晚始新世。

表 2 托氏戈壁兔 (Gobiolagus tolmachovi) 颧齿测量

<table>
<thead>
<tr>
<th></th>
<th>Erenhot</th>
<th></th>
<th>Haosibuldu</th>
<th></th>
<th>Jhama Obo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>R</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>P2 L</td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2 W</td>
<td>2</td>
<td>1.6~1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 L</td>
<td>8</td>
<td>1.2~1.6</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>P3 W</td>
<td>7</td>
<td>2.3~3.3</td>
<td>1</td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>P4 L</td>
<td>3</td>
<td>1.5~1.6</td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>P4 W</td>
<td>3</td>
<td>3.3~3.9</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>M1 L</td>
<td>1</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1 W</td>
<td>1</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2 L</td>
<td>1</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2 W</td>
<td>1</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1/2 L</td>
<td>4</td>
<td>1.4~1.9</td>
<td>1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>M1/2 W</td>
<td>2</td>
<td>2.5~3.9</td>
<td>1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>DP3 L</td>
<td>2</td>
<td>1.5~1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP3 W</td>
<td>1</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3 L</td>
<td></td>
<td></td>
<td>1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>p3 W</td>
<td></td>
<td></td>
<td>1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>p4 L</td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4 L/W (tr)</td>
<td></td>
<td></td>
<td>1.1/1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4 L/W (tal)</td>
<td></td>
<td></td>
<td>0.7/1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m1 L</td>
<td>4</td>
<td>1.7~2.1</td>
<td>1</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>m1 L/W (tr)</td>
<td>4</td>
<td>0.91.1/2.12.8</td>
<td>1</td>
<td>0.9/2.3</td>
<td>1.1/2.6</td>
</tr>
<tr>
<td>m1 L/W (tal)</td>
<td>4</td>
<td>0.81/1.51.9</td>
<td>1</td>
<td>1.1/2</td>
<td>1/1.9</td>
</tr>
<tr>
<td>m2 L</td>
<td>2</td>
<td>2.2~2.4</td>
<td>4</td>
<td>1.8~2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>m2 L/W (tr)</td>
<td>2</td>
<td>0.91/2.22.5</td>
<td>4</td>
<td>0.80.9/2.52.9</td>
<td>0.9/2.9</td>
</tr>
<tr>
<td>m2 L/W (tal)</td>
<td>3</td>
<td>1.4/1.7~2.2</td>
<td>4</td>
<td>11.2/1.52</td>
<td>1.3/2</td>
</tr>
<tr>
<td>m3 L</td>
<td>1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3 L/W (tr)</td>
<td>1</td>
<td>0.8/1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3 L/W (tal)</td>
<td>1</td>
<td>0.9/1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dp4 L</td>
<td>3</td>
<td>1.7~1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dp4 L/W (tr)</td>
<td>3</td>
<td>0.80.9/1.51.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dp4 L/W (tal)</td>
<td>3</td>
<td>0.9/1.2~1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

缩写同表 1 (Abbreviations same as table 1)。

兔科 (属、种未定) Leporidae gen. et sp. indet.

(图1L)

在二连火车站东 IVPP Loc. 1988001 地点的呼尔井组中，还采集到 2 枚 m3 (IVPP V 14763.1~2)。V 14763.1 保存较完整。齿冠较低，颊、舌侧齿冠高度相近。冠面为浑圆的三角形。下三角区约为横向宽，颊、舌侧前后压压缩的菱形。下跟段下三角区较窄，稍低，其颊侧较尖凸，舌侧较长，后缘为向后凹的弧形。第三叶冠面约为圆形，位于下跟段的后凹颊侧，与下跟段颊部连。釉质层在下三角区和下跟段的颊、舌缘和第三叶的颊、后、舌缘相接。舌的颊侧和舌侧各具长度相近的 2 横沟。颊侧 2 横沟的长约为舌侧的 3 倍。齿长:1.2 mm,下三角长/宽:5/1.2 mm, 下跟长/宽:6/1.1 mm。
在亚洲古近纪的兔形类中，已知m3具第三叶者仅有Lushilagus, Shamolagus, Streunalagus和Aktashmys 4属。二连浩特的m3的齿冠显然比Shamolagus, Streunalagus和Aktashmys 3属的低得多，而与Lushilagus danjianensis 的相近。它的冠面形态也与L. danjianensis 的较相似，所不同的是V 14763.1 的第三叶位置较靠近颊侧，与下跟座的颊部连；而L. danjianensis 的则相反，其第三叶的位置靠近舌侧，与下跟座的舌部连。这一区别可能代表不同种，甚至属的特征。但因我们的材料太少，不完全，特别是m3的变异相对比较大，目前很难判断它的意义，暂不决定其属、种。

2 内蒙古产兔形类的地层时代

本文记述的兔形类产自内蒙古的4个地点的4个层位：土木尔台盆地的查干布拉格组、扎木敢包的乌兰戈楚组、额尔登敖包的“下白层”和二连浩特的呼尔井组。前两岩组的时代最早一直被认为是晚新世（Osborn, 1929; 姜元吉等，1976; 齐陶, 1981; Li and Ting, 1983; Russell and Zhai, 1987; Wang, 1992）。近年来，随着国际上对始新世和渐新世线的进一步确定，这两组的时代均被改为晚始新世（王伴月，1997）。从所产的兔形类看，此两组均产有Gobiolagus tolmachowi，其时代分布为中始新世晚期－晚始新世。显然，这两组的时代仍以晚始新世为宜。

从额尔登敖包的“下白层”所产哺乳动物化石来看，Osborn (1929, 图 2, 剖面 2) 曾报道在“下白层”底部仅有Embolothe（Field no. 769）。江浩贤（1983）曾报道在相当“下白层”下部的第10层中产有Embolothe grangeri, Paramynodon sp., Anynodon altaensis, Metatitan sp., 和Cadurodon ardensis。齐陶（1990）在第10～13层中也列出了Embolothe grangeri。据著者（齐陶口述，上述所谓的“下白层”下部产Embolothe grangeri等化石的资料是引用 Osborn (1929) 的，而不是后来的新发现。但 Osborn (1929:5, fig. 2) 的 section 2 和Granger (1928)）的原始记录均明确标明Embolothe grangeri

1) Granger W., 1928 (MS). Records of fossil collected in Mongolia in 1928. The American Museum of Natural History, New York. 1－77
(AM 26002, Field no. 770) 产于“中红层”而不是“下白层”，“下白层”只产 Embolotherium (769)。上面列举的产于“下白层”(= 第 10 层) 的其他哺乳动物化石其实也均不产于此层。有的 (如 Amyodon alxaensis) 甚至不产于额尔登敖包地区，而是产于阿左旗的豪斯布尔都盆地 (齐陶，1975)。这样，中亚考察团在“下白层”底部肯定采集的化石只有 Embolotherium (769) 了。这个所谓的 Embolotherium (769)，后经 Granger 和 Gregory (1943) 研究认为不是 Embolotherium，而是 Titanodectes minor。此后，中国科学院古脊椎动物与古人类研究所野外队在额尔登敖包“下白层”中采到一些哺乳动物化石，包括梳趾鼠类化石 (Gobiomys exiguis, G. asiaticus) (王伴月，2001) 和本文描述的兔形类 (Desmatolagus vetustus)。此外，还有 Sharamynodon mongoliensis 的头骨、一些小哺乳动物 (仓鼠、跳鼠和食虫类) 和巨犀化石。邱占祥、王伴月 (待刊) 将产于“下白层”的巨犀化石归入 Urtinotherium parvum 和 Juxia shouyi。

上述哺乳动物群的名单中，Gobiomys asiaticus 已知仅产于此地的“下白层”，无法与其他地点的对比。Titanodectes minor 在额尔登敖包以外已知产于东台地的中始新世晚期沙拉木伦组和晚始新世乌兰戈楚组。Sharamynodon mongoliensis 已知产于中始新世晚期沙拉木伦组、李子沟组和和河堤组的任村段和晚始新世阿尔丁郭博组的底部 (Li and Ting, 1983; Russell and Zhai, 1987)。Gobiomys exiguis 和 Desmatolagus vetustus 的已知时代分布仅为晚始新世 (Burke, 1941; 王伴月，2001)。而“下白层”中所产的巨犀化石 (Urtinotherium parvum 和 Juxia shouyi) 显然要比沙拉木伦组中所产的 Juxia sharamurenensis 要进步，其时代可能较晚。综合分析所产的哺乳动物群，其时代以晚始新世乌兰戈楚期为宜。考虑到“下白层”的底部 (= 江浩贤的 8 ~ 9 层) 和“下白层”中 - 上层的岩性基本相同，均为长石石英砂岩，而“下白层”和“中红层”组成一由粗到细的沉积旋回，被归为同一岩组较合适，笔者赞同邱占祥、王伴月 (待刊, 表 51) 的意见，将“下白层”归入乌兰戈楚组，其时代为晚始新世。

呼尔井组的时代 二连浩特呼尔井组的时代也是个很复杂的问题。这有待对该层中所产的哺乳动物化石进行全面研究后，才能进行详细讨论。王伴月 (2001) 曾根据所产的梳趾鼠化石认为其时代为晚始新世。现仅根据所产的兔形类化石，对其时代作简要讨论。此层中所产的兔形类有 Desmatolagus vetustus, Gobiolagus tolmachovi 和 Leporidae indet。其中 Desmatolagus vetustus 的已知时代分布为晚始新世，Gobiolagus tolmachovi 的时代分布为中始新世晚期 ~ 晚始新世。因此，就该层中所产的兔形类看，呼尔井组的时代也以晚始新世为宜。

致谢 中国科学院古脊椎动物与古人类研究所的齐陶研究员和毕初珍女土，内蒙古二连恐龙博物馆的吴丽君、张全中和宁培杰，中国人民解放军 84994 部队的王培云、吴立传、梁泽喜和田东胜等同志参加野外考察和采集标本；本文得益于与古脊椎动物与古人类研究所的李选爱、邱占祥、吴文裕、张兆群等研究员和美国纽约自然历史博物馆的孟津博士的讨论；美国纽约自然历史博物馆的 Tedford 和孟津博士允许借阅该馆的有关标本，并同意笔者对有关标本进行研究和在我国的刊物上发表；插图由沈文龙先生绘制，在此一并表示诚挚的谢意！
LATE EOCENE LAGOMORPHS FROM NEI MONGOL, CHINA

WANG Ban-Yue

(Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044)

Key words Nei Mongol, Late Eocene, Lagomorpha

Summary

During 1980～90's, some fossil lagomorphs were collected from Late Eocene of Erenhot, Urtyn Obo (= Erden Obo) and Haosiburdu Basin, Nei Mongol, by the teams of IVPP using screen washing technique. They are first discovered in these localities. The new discovery not only expanded the distribution of the lagomorphs in Asia, added new material of the lagomorphs and augmented the content of the faunas at the localities, but also played an important role in determining the ages of the fossiliferous beds in these localities. The undescribed specimen collected from Jhamo Obo by the Third Asiatic Expedition is also described here.

1 Systematics

Lagomorpha Brandt, 1855
Ochotonidae Thomas, 1897

Desmatolagus Matthew & Granger, 1923

Desmatolagus vetustus Burke, 1941
(Fig. 1A～K; Table 1)

Specimens 1P2 (IVPP V 14759.1), 1P3 (V 14759.2), 4P4 (V 14759.3～5, V 14760.1), 13M1/2 (V 14759.6～14, V 14760.2～5), 2M3 (V 14759.15～16), 2p3 (V 14759.17, V 14760.6), 1p4 (V 14760.7), 7m1 (V 14759.18～23, V 14760.8), 4m2 (V 14759.24～25, V 14760.9～10), and 1m3 (V 14759.26).

Localities and horizons IVPP Loc. 1988001 (V 14759), east to the Railway Station of Erenhot, upper Eocene Houldjing Formation; IVPP Loc. 1991004 (V 14760), Urtyn Obo, Siziwang Qi, "Lower White" of upper Eocene Ulan Gochu Formation.

Remarks All the described specimens are lower crowned. The P2 and P3 are trilobate in occlusal view. The central cusp is the highest, and extends anterolingually and joins with the metastyle. The crowns of P4～M3 are slightly higher lingually. M3 is small and its highly reduced talon is only composed of one small cusp.

p3 is trilobate in occlusal surface, with one shallow anterior lingual reentrant and a deep hypostriid. The middle cheek teeth (p4, m1 and m2) are brachydont, with a narrow entostriid nearly as high as the wide hypostriid in height. The enamel layer of the posterior wall of the trigonid is thick and has a spike project backwards at the midpoint of the posterior wall. The talonid is about triangular in occlusal view, with curved lingual and posterior walls. On the less worn teeth, the third lobe can be seen. The m3 is reduced into a much smaller one.

All the features of the cheek teeth described above are similar to those of Desmatolagus vetustus. However, these teeth from Urtyn Obo seem slightly smaller than those of D. vetustus described by Burke (1941), but close to those of D. cf. D. vetustus described by Meng and Hu (2004) in size. The cheek teeth from Erenhot, however, are generally larger in size, filling in the size gap between the teeth of D. vetustus and D. cf. D. vetustus (see Table 1). In addition, the lingual and posterior sides of the talonid of the cheek teeth from both Urtyn Obo and Erenhot are curved, which is similar to that of D. vetustus rather than that of D. cf. D. vetustus. The specimens from both Urtyn Obo and Erenhot are here referred to D. vetustus.
Leporidae Fischer de Waldheim, 1817
Gobiobagus Burke, 1941
Gobiobagus tolmachovi Burke, 1941
(Fig. 2; Table 2)

Gobiobagus andrewsi Burke, 1941: 8–10, fig. 4
Gobiobagus andrewsi Meng et al., 2005: 11, fig. 1(2), 6

Specimens Parts of left maxilla with P3 ~ P4 and left lower jaw with p4 ~ m2 (AMNH 94703), 4P2 (IVPP V 14761.1 ~ 4), 9P3 (V 14761.5 ~ 12, V 14762.1), 3P4 (V 14761.13 ~ 15), 3DP3 (V 14761.16 ~ 18), one segment of left maxilla with M1 ~ 2 (V 14761.19), 7M1/2 (V 14761.20 ~ 25, V 14762.2), 1M3 (V 14761.26), 2 segments of left lower jaws (V 14762.3 ~ 4), 5m1 (V 14761.27 ~ 31), 5m2 (V 14761.32 ~ 34, V 14762.5 ~ 6), 1m3 (V 14761.35) and 3dp4 (V 14761.36 ~ 38).

Localities and horizons IVPP Loc. 1988001 (V 14761), east to the Railway Station of Erenhot, upper Eocene Houldin Formation; Jhama Obo (AMNH 94703, Field no. 674), Siziwang Qi, upper Eocene Ulan Golchi Formation; and IVPP Loc. 1974097 (1994-1) (V 14762), Lügenzhadagai, Haosibuldu Basin, Alxa Zuqi, 3rd layer of upper Eocene Qagan Bulag (= Chaganbulag) Formation.

Remarks The anterior crest of the anterior root of the zygomatic arch is opposite to P3; the posterior side of the anterior root is opposite to M1. The buccal side of the series of upper cheek teeth is bending lingually. The horizontal ramus of the mandible is deep, narrowing transversely anterior to m1. The mental foramen is under p4. The anterior margin of the masseteric fossa reaches to the level of m3. In front of the anterior margin a distinct swollen tubercle is present under m2. All these features are similar to that of *Gobiobagus tolmachovi*.

The cheek teeth are unilateral hypsodont. So far no crown of P2 of *Gobiobagus* has been reported. It is described in detail here. The P2 is also oval in occlusal view, with trilobate. However, its middle lobe is much larger and higher than other two lobes and extends forwards, rather than anterolingually as in *Desmatolagus*. Its lingual lobe is shorter and the central valley is wider and shallower than the latter. P2 is also single-rooted, but without longitudinal groove.

The crowns of P3 ~ M2 are much higher lingually than the buccally. The M3 is smaller, with a reduced and narrower talon.

The buccal side of the crown of the lower cheek teeth are much higher than the lingual one. The only p3 is erupting (V 14762.3) and shows the unworn occlusal features (Fig. 2H). The trigonid is V-shaped, higher than the talonid. The trigonid basin opens lingually to form a large anterior lingual reentrant, which becomes narrower towards the base of the crown. In buccal view, the length of the trigonid increases downwards and the hypostridi narrows and shifts backwards.

In p4 ~ m3 the trigonid is wider than the talonid. The hypostridi is wider and longer than the entostridi. In the less worn specimens the entostridi remains and lingual end of the dentine of the talonid is separated from that of the trigonid. But when the entostridi disappears in the more worn specimens, the lingual end of the dentine of the talonid joins with that of the trigonid. On p4 the trigonid is pear-shaped with a round buccal side on the occlusal surface. The talonid is small and reduced. The trigonid of m1 is also about pear-shaped on the occlusal surface, but the buccal side is more compressed longitudinally. The talonid is near triangular in occlusal view and slightly shorter than the trigonid in the length. The m2 is largest teeth with a rhomboid, compressed anteroposteriorly trigonid. The talonid is longer than the trigonid. The m3 is reduced and small.

As in *Desmatolagus* (Tobien, 1986, p. 224, fig. 2), the DP3 is also trapezoid in occlusal
view, with a concave buccal side. The lingual cusp is the largest, with a shallow hypostria on its lingual wall. The anteroloph is developed. But the lingual side of the crown is much higher than the buccal one. The central cusp extends forwards. The complete posteroloph joins with meta-
style, but its buccal end is lower than the latter. DP3 has three roots. On the dp4 (V 1476.1.36, Fig. 2) both the trigonid and talonid are transverse elongated rhomboid in occlusal view and the trigonid is higher and wider than the talonid, while in Desmatolagus, the trigonid is narrow and the talonid is broad and with third lobe.

As described above, all the features of the cheek teeth are also similar to those of Gobiolagus, especially to those of G. tolmachovi and G. andrewsi in size (see Table 2). According to Burke (1941), G. andrewsi is different from G. tolmachovi in p3 being more compressed transversely and having a more posteriorly located lingual reentrant. The specimens from Nei Mongol are similar to G. tolmachovi rather than G. andrewsi in p3 structure and seem to be referred to G. tolmachovi.

Meng et al. (2005) mentioned that the lingual side of anterior half of p3 in G. andrewsi was damaged, which makes the tooth narrower, and the position of the lingual reentrant varies with wear from individual to individual. They suggested: “It is highly possible that G. andrewsi is but a junior synonym of G. tolmachovi”. I agree with Meng et al. (2005), because the erupting p3 (V 14762.3) shows the great variation of the reentrants with wear. If it is reasonable, the geological age of G. tolmachovi would be ranged from late Middle Eocene Sharamurunian through Late Eocene Ulangochuian.

Leporidae gen. et sp. indet.
(Fig. 1L)

Two m3 (IVPP V 14763.1 ～2) are collected from Houldjin Formation at IVPP Loc. 1988001, east to the Railway Station of Erenhot. They are brachydont and composed of trigonid, talonid and third lobe. In the Asian Paleogene lagomorphs only Lushilagus, Shamolagus, Strenulagus and Akhashmys have third lobe in m3. The m3 from Nei Mongol is closer to Lushilagus, especially to L. danjiansensis, in having lower crown. However, its third lobe is located near buccal side and joins with the buccal part of the talonid, while in Lushilagus the third lobe is located near lingual side and joins with the talonid on the lingual part. These differences show that the above specimens could be a new form, either representing a new species of Lushilagus or even a new genus distinct from Lushilagus.

2 The age of the strata yielding the lagomorphs

The age of the “Lower White” layer in Urtyn Obo section From the beginning the age and correlation of the “Lower White” layer in Urtyn Obo are uncertain. The Urtyn Obo section was published first by Osborn (1929). He called the upper and middle parts of the “Lower White” as Ulan Gochu Formation but thought the lower part uncertain: either belonging to Ulan Gochu Formation or to Shara Murun Formation (Osborn, 1929, fig. 2, section 2). Then, the whole layer of the “Lower White” layer was considered to belong to the Ulan Gochu Formation (Chang, 1931). Later, the “Lower White” layer was divided into six layers (=Jiang’s 8 ～ 13 layers), and the most upper part (10 ～ 13 layers) was thought to belong to the Urtyn Obo Formation and the lower part (8 ～ 9 layers) to Ali Usu Formation (Jiang, 1983), or to the Ulan Gochu F. and Shara Murun F. respectively by Qi (1990). Recently the whole layer of the “Lower White” was considered as belong to late Middle Eocene Shara Murun Formation (Wang, 2001) or to Late Eocene Ulan Gochu Formation (Qiu and Wang, in press).

The mammalian fossils from the “Lower White” have been reported to include Titanodectes minor, Gobiomys exigius, G. asiaticus, Sharamynodon mongoliensis, Urtinoetherium parvum,
Juxia shouli (Granger and Gregory, 1943; Wang, 2001; Qiu and Wang, in press), and Desmatolagus vetustus described above. Some other mammalian fossils, such as Embolotherium grangeri, Paramynodon sp., Amynodon alxaensis, Metatitan sp. and Cadurcodon ardynensis, had been listed from the 10th layer (Jiang, 1983; Qi, 1990). According to Qi (in communication), however, the latter five were quoted from Osborn (1929). In fact, the only fossil reported by Osborn (1929) from the base of the “Lower White” is Embolotherium (Field no. 769), which was later described as Titanotheres minor by Granger and Gregory (1943). The latter five taxa have never been collected from the “Lower White”. Thus, the mammalian fossils from the “Lower White” are known to include only the former seven forms. Among them Gobionyx asiaticus is known to occur in the “Lower White” only. Titanodectes minor, Sharamynodon mongoliensis are known in other localities to range from late Middle Eocene through Late Eocene, and Gobionyx exigus and Desmatolagus vetustus are known to occur in Late Eocene only. Urtinothecium parvum and Juxia shouli are more advanced than Juxia sharamurenensis from Shara Murun Formation. It appears that the “Lower White” is of Late Eocene Ulangochuian in age. Since the base of the “Lower White” (= Jiang’s 8–9 layers) are composed of the similar deposits as the upper and middle parts of the “Lower White”, and the “Lower White” belongs to the one of the same depositional cycle with the “Middle Red” of the Ulan Gochu Formation, it is better to refer the “Lower White” to the Ulan Gochu Formation.

The age of the Houldjin Formation The age of the Houldjin Formation is also a puzzling problem and should be solved based on in-depth study on the entire mammalian fauna. Wang (2001) considered its age as Late Eocene based on ctenodactyloid fossils. As far as the lagomorphs are concerned, as described above, the lagomorphs from the Houldjin Formation include Desmatolagus vetustus, Gobiolagus tolmachovi and Leporidae indet. Among them Desmatolagus vetustus is known to occur in Late Eocene, and Gobiolagus tolmachovi to range from late Middle through Late Eocene in age. It seems that the Houldjin Formation is of Late Eocene in age based on these lagomorphs.

References

Meng J (孟津), Hu Y M (胡耀明), 2004. Lagomorphs from the Yiheshu Late Eocene of Nei Mongol (Inner Mongolia). Vert PalAsiat (古脊椎动物学报), 42(4): 261 ~ 275

Tobien H, 1986. Deciduous teeth of Desmatolagus (Lagomorpha, Mammalia) from the Mongolian Oligocene and of related European genera. Quartärpaläontologie, 6: 223 ~ 229

