Eocene ischyromyids (Rodentia, Mammalia) from the Erlian Basin, Nei Mongol, China

LI Qian1,2, MENG Jin1,2

(1 Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, liqian@ivpp.ac.cn)
(2 Division of Paleontology, American Museum of Natural History New York, NY 10024, USA)
(3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing 210008)

Key words Huheboerhe area, Nei Mongol; Eocene; ischyromyids

Summary

The ischyromyids are the most primitive rodents that have a Holarctic Paleogene distribution. Members of the family are predominant in Paleogene rodents of North America, but are relatively rare in both Asia and Europe. Here we report some new material of the Eocene ischyromyids from the Huheboerhe area in the Erlian Basin, Nei Mongol, China. These include Asiomys dawsoni from the basal strata of the Irdin Manha Formation and Ischyromyidae gen. et sp. indet. from the basal strata of the Arshanto Formation. The new materials include fragmentary mandibles and numerous cheek teeth, which provide new evidence for mammal’s dispersal between Asia and North America during the Middle Eocene.

Rodentia Bowditch, 1821
Ischyromyidae Alston, 1876
Asiomys Qi, 1987
Asiomys dawsoni Qi, 1987
(Figs.1–3; Tables 1–2)

Holotype A right M1 (IVPP V 5684).
Paratype A right m1 (V 5685), a left m2 (V 5686) and incisor.
New materials P4, V 17799.1-4; M1, V 17799.5-12; M2, V 17799.13-15; M3, V 17799.16-27; dp4, V 17800.1; p4, V 17800.2-5; m1, V 17800.6-10; m2, V 17800.11-12; m3, V 17800.13-16; fragmentary left mandible with m2, V 17801; fragmentary left mandible with p4-m3, V 17802.
Locality and horizon Huheboerhe, Erlian Basin, Nei Mongol; basal beds of the Irdin.
Manha Formation; Middle Eocene.

Differential diagnosis Larger ischyromyids; the mandible robust and deep; anterior edge of the masseteric fossa below the middle of m2 and the masseteric knob prominent; the diastema short; one large mental foramen below diastema. Incisor enamel pauciserial; cheek teeth with prominent main cusps; the P4 hypocone absent and M1 or M2 hypocone small; the protoloph and metaloph complete; the protocone small or absent; two metaconules with the one near the protocone being larger in size; the anterior and posterior cingulum prominent. The hypolophid of dp4 complete but absent on p4. The metalophid on lower molars having different length, the hypoconid connected to the posterolophid, the ectolophid complete, and the hypolophid short; enamel on the posteroloph and posterolophid wrinkled.

Discussion *Asiomys* is similar to species of both paraemyines and reithroparamyines in size. Qi (1987) suggested that *Asiomys* belongs to reithroparamyines, based on its two metaconules and the entoconid being completely separated from the posterolophid. The mandible of *Asiomys* is similar to that of *Paramys delicatus* (Wood, 1962) in the following features: it is rather robust and deep; the masseteric fossa is prominent and its sides converge at an angle of about 90°; there is a prominent masseteric knob below the middle of M2. In comparison, the lower jaw of *Reithroparamys delicatissimus* (Wood, 1962) is more slender than that of *Asiomys* and its masseteric fossa narrows anteriorly with an angle of about 60°. Dental characters of *Asiomys* include absence of the hypocone on P4 but small on molars; the anterior cingulum connects the metaconid and the protoconid; the entoconid on m2-3 is essentially continuous with the posterolophid, which is similar to those of Paramyinae. The hypocone is present on P4, well-developed on molars; the distinct hypoconulid and isolated entoconid of reithroparamyines show that reithroparamyines are quite different from *Asiomys*. *Asiomys* is tentatively attributed to Paramyinae based on the fragmentary mandible and the cheek teeth.

Asiomys differs from other Middle Eocene Asian ischyromyids, such as *Anatoparamys* (Dawson and Wang, 2001), *Eosischyromys* (Wang and Dawson, 1998) and *Hulgana* (Dawson, 1968), in having a small hypocone and two metaconules on upper molars, a complete hypolophid on dp4 and a short hypolophid and a small hypocounulid on lower molars. Wood (1962) suggested some evolutionary trends in ischyromyids: the incisors enamel has expanded onto the median and lateral sides of the teeth; a distinct hypocone on M1-2 and the hypolophid are common in Middle Eocene North America ischyromyids. The teeth of *Asiomys* appear consistent with the trends. Because *Asiomys* is more similar to the North American ischyromyids than to the Asian ones, it provides a new evidence for faunal exchanges between Asia and North America during the Middle Eocene.
Ischyromyidae gen. et sp. indet.

(Fig. 4)

Specimens A right M1 (IVPP V 17803), a left P4 (V 17804).

Locality and horizon Nuhetingboerhe, Erlian Basin, Nei Mongol; basal beds of the Arshanto Formation; Early Eocene.

Description and comparison Four main cusps on M1 are distinct and the crests are low. The protoconule is smaller than the paracone. There are two metaconules. Both the protoloph and the metaloph are weak. The mesostyle is absent. The slight wrinkles appear in M1. The enamel is highly corrugated and the hypocone is absent on P4. All these features are reminiscent of ischyromyids.

The cheek teeth of Thisbemys (Wood, 1962), Churcheria (Storer, 1988; Anderson, 2008) and Metaparamys compressidens (Korth and Emry, 2007) have extensive wrinkles. Thisbemys and M. compressidens are larger in size than the specimens from Nuhetingboerhe section. The mesostyles of Thisbemys and M. compressidens are distinct. Churcheria is smaller in size than the new materials. The protoconule and the metaconule of Churcheria are weak. Here they are tentatively referred to Ischyromyidae gen. et sp. indet., but can not be identified at the generic and specific level.

内蒙古二连盆地呼和勃尔和地区壮鼠类化石

李茜1,2 孟津1,2

(1 中国科学院古脊椎动物与古人类研究所，中国科学院脊椎动物演化与人类起源重点实验室 北京 100044)
(2 美国自然历史博物馆古生物学部 纽约 10024)
(3 现代古生物学和地层学国家重点实验室，中国科学院南京地质古生物学研究所 南京 210008)

摘要：描述了产自内蒙古二连盆地呼和勃尔和地区的始新世壮鼠类化石，包括呼和勃尔和剖面伊尔丁曼哈组底部的Axiomys dawsoni以及努尔勃尔和剖面阿山头组底部的Ischyromyidae gen. et sp. indet.。其中Axiomys与其他壮鼠类的区别在于其下颌厚、高；咬肌窝明显、前缘宽，并有较明显的结节；P4无次尖、M1和M2次尖小；后小尖2个；dp4有明显的下次脊、p4无下次脊；下臼齿下原尖后棱长短不一，下次尖与下后齿带相连、下外脊完整、下次脊短。Axiomys的下颌特征与Paramys delicatus相似，门齿质质层、上臼齿次尖、下臼齿下次脊等结构特征与北美中始新世的壮鼠类相近，与亚洲已知的壮鼠类差别较大。因此，Axiomys是中始新世亚洲与北美大陆哺乳动物之间交流的又一佐证。

关键词：内蒙古呼和勃尔和地区，始新世，壮鼠类

中图法分类号：Q915.873 文献标识码：A 文章编号：1000-3118(2013)04-0289-16
近年来，我们在内蒙古二连盆地呼和布尔和地区（大致相当于中亚考察团马捷茨基及周边地区），选择实测4条剖面，分别位于道特音右包、努和廷勃尔和、乌兰哈日和以及呼和布尔和。其中努和廷勃尔和与呼和布尔两条剖面，可以综合成一条剖面，代表这一地区露头的全部古近纪地层（Meng et al., 2007b）。根据上、下两个剖面整合其划分为3个部分，再依据层次关系、与命名剖面的岩性对比，并结合各层次中产出的哺乳动物化石，认为自下而上依次是：脑木根组、阿山头组和伊尔丁曼哈组。最近开展的一系列研究工作澄清了呼和布尔和地区长期存在的同一系列岩石地层学与生物地层学方面的问题（Meng et al., 2007b），并根据该地区多个厚度上不同门类哺乳动物化石的研究（Meng et al., 2004, 2007a; Ni et al., 2007; Bai et al., 2010; Li and Meng, 2010; Jin, 2012; Li, 2012; 毛方圆，王元青，2012）建立起了该区域哺乳动物年代框架（Wang et al., 2010），同时开展了磁性地层学的研究（孙舒等，2009），综合以上研究成果认为阿山头组底部属于早始新世，伊尔丁曼哈组底部被归入中始新世。

以Paramys为代表的壮兽亚类化石是啮齿类中的原始类型。它在古近纪左右区分布。最早的壮兽类Paramys adamus发现于北美上古新统（Dawson and Beard, 1996），不仅如此，壮兽类化石在北美始新统和渐新统中也相当普遍。欧洲也有壮鼠类的记载（Wood, 1962; McKenna and Bell, 1997），近年在亚洲陆上发生新的发现（Dawson, 1968; Qi, 1987; Tong and Dawson, 1995; 王宗山，Dawson, 1998; Dawson and Wang, 2001; 王宗山、王景文, 2006）。本文记述的壮鼠类化石分别发现于二连盆地呼和布尔和剖面伊尔丁曼哈组底部和努和廷勃尔和剖面阿山头组底部。它们的发现再次证实早期始新世亚洲与北大陆间哺乳动物交流的存在（McKenna, 1983; 王宗山、王景文, 2006），为探讨壮鼠类在不同大陆间的迁移和交流提供了更多线索。

材料和方法 本文中记述的标本通过不同的采集方法获得，其中单颗颊齿由筛洗砂样获得，两个下颌由地面采集。门齿釉质结构分析方法如下：取出左侧门齿的一段，首先用胶包埋，根据在上颌上的位置将其定向，分别作纵向和横向切割，用金刚砂细刷，后用0.1 mol磷酸酸刻50秒，再冲洗干后镀金，最后在JSM-6100扫描电镜下观察。颊齿冠面各部的名称主要依据Wood (1962)。缩写：IVPP, 中国科学院古脊椎动物与古人类研究所；AMNH, American Museum of Natural History美国自然历史博物馆；PE (portion externa), 外层；PI (portion interna), 内层；EDJ (enamel dentine junction), 釉齿质界。

啮齿目 Rodentia Bowditch, 1821
松鼠型亚目 Sciuromorpha Brandt, 1855
壮鼠科 Ischyromyidae Alston, 1876
亚洲鼠 Asiomys Qi, 1987

属型种 Asiomys dawsoni Qi, 1987。

修订属征 个体较大的一类壮鼠。下颌厚、高，咬肌窝明显，前缘达m2中部下方并有较明显的节结。齿缺短，有一较大颊孔位于齿缺后部近上缘。下门齿釉质结构为散系。上臼齿尖直尖明显。P4无尖尖，M1和M2次尖尖。上颊齿原黏和后黏完整，后黏与原黏弱连接；前小尖小或不明显，后小尖2个，靠近原黏的较大；前后齿带发育。dp4有明
显的下次脊，p4无下次脊。下臼齿下原尖后棱长短不一，下次尖与下后齿带相连。下外脊完整，下次脊短。(下)后齿带上常有瘤型皱褶。

道氏亚洲鼠 *Aisowmy Dawsoni* Qi, 1987

(图1-3; 表1-2)

正型标本 右M1 (IVPP V 5684)。

副型标本 右m1 (IVPP V 5685), 左m2 (IVPP V 5686)和门齿。

新标本 4个P4 (IVPP V 17799.1-4), 8个M1 (V 17799.5-12), 3个M2 (V 17799.13-15), 12个M3 (V 17799.16-27), 1个dp4 (V 17800.1), 4个p4 (V 17800.2-5), 5个m1 (V 17800.6-10), 2个m2 (V 17800.11-12), 4个m3 (V 17800.13-16); 一段左下颌带m2 (V 17801); 一段左下颌带p4-m3 (V 17802)。

新标本地点和层位 内蒙古二连盆地呼和浩特剖面，伊尔丁曼哈组底部，中始新世。

种的特征 见修订的属征。

描述 P4长小于宽 (图1A; 表1)，原尖为最发育的尖、最低；前尖，后尖略低于原尖，二者基本等大，彼此没有连接；无下次，或仅为后齿带舌侧端一小的突起。前尖和原尖之间由完整的原脊相连，原脊在中央的位置略低，其上没有明显的前小尖。后小尖有两个，靠近原尖的一个与后尖大小相当，另一个小而不明显，靠近后尖，三者之间由后脊相连并延伸至原尖基部，与后尖部连接。前、后齿带明显，前、后脊略低，后齿带比前齿带发育，且釉质表面常有皱褶，无中附尖。

M1冠面呈长方形 (图1B-C; 表1)。原尖、前尖、后尖、前小尖、后小尖及原、后脊的特点与P4中的都非常接近，明显不同的是M1有较为发育的次尖。次尖为原尖后方的一个小尖，比原尖低且向颊侧延伸。原尖与次尖之间的舌侧凹很浅，并且仅出现在舌侧壁上部。前、后齿带明显，前齿带窄，从前尖一直延伸到原尖的颊侧，后齿带宽，从前尖出发延伸到后尖的后方，后齿带釉质表面常有皱褶 (出现率为3/8)。一个小的中附尖在部分标本中出现 (出现率为2/8)。

M2 (图1D-E; 表1) 与M1特征很接近，只是个体更大一些。

M3冠面呈圆三角形 (图1F-G; 表1)。舌侧仅有原尖，无次尖。后尖退化成颊侧一个很小的尖。原尖与前尖等高。原脊上的前小尖较M1中明显。两个后小尖很清晰，且基本等大。原脊与后脊部与原尖相连。前、后齿带明显，后齿带釉质表面的褶皱比M1和M2的更为明显。无中附尖。

在保存的乳齿中，dp4冠面呈楔形 (图1H; 表1)，下跟座明显比下三角座宽。下三角座下后尖与下原尖基本等大，前段无连接；下原尖后棱发育延伸到下后尖基部，封闭下三角座后端。下跟座中下次尖和下内尖发育，下次尖为——横向发育的小尖出现在下后齿带。下内尖发出一条明显的下次脊，略斜向后方延伸，最终与下次小尖相连。下外脊完整，后端向颊侧弯曲，连接下原尖和下次尖。无下中尖。

最后下前臼齿 (p4) (图1I-J; 表1) 下三角座中下后尖很显著，比下原尖大，且向前方突出。下原尖和下后尖二者前段无连接 (出现率为2/4) 或连接很弱 (出现率为2/4)。下原尖后棱和下后尖后棱相连将三角座后端封闭。下跟座中下次尖略大于下内尖，二者等高，下次小尖弱或不明显。下次尖和下内尖由下后齿带相连。下外脊完整，低。无下次脊和
图 1 亚洲道氏鼠下齿列冠面视
Fig. 1 Occlusal view of the cheek teeth of *Asiomys dawsoni*
A. IVPP V 17799.3, right P4; B. V 17799.5, left M1; C. V 17799.9, right M1; D. V 17799.13, left M2; E. V 17799.15, right M2; F. V 17799.25, right M3; G. V 17799.17, left M3; H. V 17800.1, right dp4; I. V 17800.2, left p4; J. V 17800.5, right p4; K. V 17800.8, left m1; L. V 17800.10, right m1; M. V 17800.11, left m2; N. V 17800.12, right m2; O. V 17800.16, right m3
下中尖。

下臼齿中，m1冠面呈长方形（图1K-L；表1）。舌侧的下后尖和下内尖较颊侧的下原尖和下次尖略向前移，且舌侧的尖较颊侧的尖高。下原尖前、后棱很发育，分别延伸到下后尖的前、后基部，形成封闭的下三角凹。下内尖略呈脊形，基本孤立，与下后齿带中浅沟相隔。下次尖短，末端游离。下次尖明显，与下后齿带相连。下后齿带上有小的瘤状褶皱。下外脊直、完整，有小的下中尖（出现率为2/5）或无（出现率为3/5）。

从我们现有的标本来看，m2（图1M-N；表1）与m1很相似，个体比m1略大，更为横宽，下三角齿与下跟齿基本等宽。m2下后尖后棱短，没有m1中发育，因此下三角齿向前开口；下内尖与下后齿带之间的浅沟不明显。

与m1-2不同，m3（图1O；表1）前后拉长，后端呈圆弧。下原尖后棱与m2中相似，短。在个别标本中有发育的下后尖后棱，但并未与下后尖棱相连。下次脊不明显。下外脊增长，下中尖比m1中的明显。下后齿带将下内尖和下次尖相连，瘤状的褶皱在后齿带上很明显。

表1 道氏亚洲鼠颊齿测量

<table>
<thead>
<tr>
<th>Tooth</th>
<th>n</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min–max</td>
<td>mean</td>
</tr>
<tr>
<td>P4 (V 17799.1-4)</td>
<td>4</td>
<td>3.4–3.78</td>
<td>3.53</td>
</tr>
<tr>
<td>M1 (V 17799.5-12)</td>
<td>8</td>
<td>3.48–4.2</td>
<td>3.95</td>
</tr>
<tr>
<td>M2 (V 17799.13-15)</td>
<td>3</td>
<td>4–4.6</td>
<td>4.3</td>
</tr>
<tr>
<td>M3 (V 17799.16-27)</td>
<td>12</td>
<td>3.82–4.86</td>
<td>4.49</td>
</tr>
<tr>
<td>dp4 (V 17800.1)</td>
<td>1</td>
<td>3.65</td>
<td>3.65</td>
</tr>
<tr>
<td>p4 (V 17800.2-5)</td>
<td>4</td>
<td>3.77–4.25</td>
<td>3.95</td>
</tr>
<tr>
<td>m1 (V 17800.6-10)</td>
<td>5</td>
<td>3.65–4.14</td>
<td>3.97</td>
</tr>
<tr>
<td>m2 (V 17800.11-12)</td>
<td>2</td>
<td>3.92–4.17</td>
<td>4.05</td>
</tr>
<tr>
<td>m3 (V 17800.13-16)</td>
<td>4</td>
<td>4.49–5.05</td>
<td>4.77</td>
</tr>
</tbody>
</table>

标本V 17801和V 17802（图2；表2）都保存有部分下颌骨。下颌骨质厚，高，外侧面中咬肌窝明显，形成咬肌窝的上、下两条棱在m2下方交汇，形成凹陷的下三角齿；咬肌窝前方有明显突出的结节。齿根较短，齿根面较锐的骨，侧视稍凹，有一个较大的骨孔位于齿根后部近上缘。下颌内侧面有很多齿状孔。

V 17801和V 17802保存的颊齿个体较其他标本显得略有大（表2）。V 17802中p4与m1磨蚀严重；m2下外脊略向内侧靠近，约在牙齿冠面横宽的1/3处，下原尖后棱和下次脊较其他标本中的更明显。虽然在个体大小和颊齿结构上与通过筛洗获得的单个牙齿略有不同，但所有这些标本均来自一个地点的同一层位，因而认为这些变化很可能只是个体之间的变异，在此将这两个标本也归入到_Asiomys dawsoni_中。
Fig. 2 Mandibles of *Asiomys dawsoni*

A-C. IVPP V 17801, left mandibular fragment with m2, A. occlusal view, B. labial view, C. lingual view;
D-E. V 17802, left mandibular fragment with p4-m3, D. occlusal view, E. lingual view
表2 北氏亚洲鼠下齿列测量

<table>
<thead>
<tr>
<th></th>
<th>p4 (V 17802)</th>
<th>m1 (V 17802)</th>
<th>m2 (V 17802)</th>
<th>m3 (V 17802)</th>
<th>m2 (V 17801)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>4.4</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>5</td>
</tr>
<tr>
<td>Width</td>
<td>4.1</td>
<td>4.4</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

V 17801中保存有一段较完整的下门齿。下门齿断面为扁三角形，颊侧面扁，舌侧面圆凸。釉质层较薄，分布于底面和部分颊侧面，在颊侧面釉质层宽1/3。在Asiomyd Dawsoni已知的化石中，还没有做过牙釉质显微结构的报道。我们对V17801标本进行了相关的研究和釉质结构分析，结果如下：

门齿的横切面(图3A): 釉质层总厚约115 μm，内外两层釉质层比较清楚，无釉柱的最外层很薄。外层厚36-30 μm，釉柱切面呈椭圆形。釉柱间质发育，晶间方向与釉柱平行。内层厚80 μm，能看到施氏明暗带，但每个带中釉柱数不定，多为2-4根柱。

门齿的纵切面(图3B-C): 釉质层总厚度为110 μm左右，内外釉质层界限不很清楚。外层厚20 μm，其厚度比率为22%，釉柱不很清楚，局部有较明显的釉柱，釉柱间质发育。内层厚90 μm，施氏明暗带明显，每个带中釉柱数3-5根不定，多为3根柱，施氏明暗带倾斜率为25°-30°。内层釉柱截面形状多为椭圆形，釉柱间质围绕釉柱，微晶方向与釉柱平行。综合来看，该门齿的釉质微细结构特点为施氏明暗带宽度不定，应当属于比较原始的散系(Martin, 1993)。

比较 二连盆地呼和浩特和地区新发现的壮鼠标本，颊齿有下列一些明显的特征：1) 原尖最大，前、后尖等大，次尖小、但明显；2) 中间有尖时出现；3) 原尖和后尖都很发育，都与原尖相连；4) 有1个大的前小尖，2个后小尖(一大一小)；5) 前、后尖间很显著；6) 原尖与次尖的舌侧深凹。下臼齿：7) 下原尖前、后棱在m1中都很发育，将下三角形封闭；下原尖后棱在m2-3中有变化，通常较短，下三角形向后开口；8) 下外脊完整，连接下原尖和下次尖；9) 下内尖在m1中与下后尖带有浅沟相隔，m2-3中与下后尖带连接；10) dp4下次脊很显著，与下次尖相连，m1-2有短的下次脊；11) 下下的下尖偶尔出现。以上这些特征与Asiomyd Dawsoni (Qi, 1987)非常相似，仅有6和10两个特征略有不同。Qi (1987)的描述中指出，在原尖与次尖之间有陡直的舌侧凹，但其并未说清；下臼齿的描述和插图中都没有下次脊的出现。虽然略有差异，但大多数特征还是吻合的，而且Qi (1987)当时只收集到了3颗牙齿，所以这少量的差异可以看作是种内变异，因此将这些新发现的标准归入A. Dawsoni。

新发现的壮鼠类材料，不仅有前臼齿和臼齿，还有下颌材料，为Asiomyd补充了大量新的特征。根据这些特征，可以和亚洲已有的壮鼠类材料进行更深入的比较：

图 3 道氏亚洲鼠(IVPP V 17801)上门齿釉质结构
Fig. 3 SEM micrograph of the lower incisor enamel of *Asiomys dawsoni* (IVPP V 17801)
A. cross section; B-C. longitudinal sections
以发育的下中尖取代，且有下外中脊。T. changlensis的下外脊也仅是部分发育，有明显的下中尖。

Anatoparamys crepaturus (Dawson and Wang, 2001)发现于江苏上黄裂隙堆积中，个体比Asiomyx小，二着区别在于：1) Asiomyx原尖之后有小的次尖，A. crepaturus原尖横向增大、占据整个舌侧，无次尖；2) Asiomyx中下尖只是偶尔出现，A. crepaturus中下尖明显；3) Asiomyx中大一小两个后尖在M1-3中都有出现，A. crepaturus仅M1中有两个后尖；4) A. crepaturus的下原尖特别膨大；5) Asiomyx的dp4中有比较明显的下次脊，m1-2中也有短的下次脊，A. crepaturus的下臼齿没有下次脊；6) Asiomyx下后齿带上有限明显的瘤状褶皱或小的下次小尖。

Eosischromyms youngi (杨氏东方壮鼠)(王伴月、Dawson, 1998)见于我国两个地点：北京长辛店高佃村长辛店组和内蒙古四子王旗巴彦乌兰上部灰层。E. youngi只发现了下颌材料，下颌骨肌窝浅，前方无明显的界线或结节；颊齿低冠，个体较Asiomyx略小；下门齿珐琅质微细结构为单系；臼齿下次脊完全，下次小尖明显，与Asiomyx明显不同。

Hulgana ertnia (Dawson, 1968)产于内蒙古东台地雅玛沟1号(Dhama Obo, East Mesa)乌兰戈楚层。H. ertnia下颌骨肌窝前端延伸至m2根部下方或者m2与m3之间，从原始插图上看，有一大一小两个小孔位于齿缺处。Asiomyx的咬肌窝相对靠前，只有一个小孔。H. ertnia上臼齿没有明显的次尖，只是该区域有些膨大，原脊和后脊上没有小尖，下臼齿没有下次脊，下外脊很短。与次尖小尖、小尖发育、下臼齿中有短下次脊的Asiomyx区别显著。

Shevyreva (1984)描述了哈萨克斯坦伊塞克盆地的两类壮鼠化石，其中Paramys obayliensis只有一颗m2，该标本下外脊不明显，下内尖没有发出下次脊。Abrasomys agasama材料为一颗M3，原脊和后脊完整，没有出现小尖。Asiomyx与以上两类标本特征明显不同。

李传夔(1963)报道过内蒙古锡林郭勒勒呼图格扎格发现的一个左下臼齿(m1或m2)。这颗下臼齿下原尖后棱明显，伸达下后尖基部，下外脊完整，下内尖向内侧发出一微弱的棱，可以看作弱的下次脊，下内尖与下后尖相连，下后尖带上有轻微的釉质皱起成小斑点状。这枚臼齿的下三角座与下跟座基本等宽，所以推断更可能是m2。如果推断正确，该标本与Asiomyx特征很接近，也许可以归人同一个属中。

Dawson (1964)描述了内蒙古发现的一些壮鼠类化石材料，其中AMNH 20235发现于二连市以东约40 km (25 miles)的伊尔丁曼哈层。该标本下原尖后棱长、下内尖脊形、有小的下次小尖。Dawson认为它与李传夔(1963)描述的壮鼠标本很相似，只是其下原尖后棱更为发育一些，个体略大。在Asiomyx中，下原尖后棱的发育程度与个体大小都略有变化，似乎AMNH 20235也可以归人Asiomyx中。AMNH 20176包括有三个门齿、1个p4和1个下臼齿(m1或m2)，其中p4磨蚀严重，下内尖与下后尖带已分隔；下臼齿下内尖在齿冠边缘没有脊形，以上两点特征与Asiomyx区别明显。AMNH 80800发现于马捷茨营地以西约11 km (7 miles)的伊尔丁曼哈层，保存有m2-m3。该标本m2下内尖小、不脊形，下后尖带短，与下内尖由浅沟相隔开，与Asiomyx不同。AMNH 80801为一段左侧下颌带有限m1-2，产出马捷茨营地伊尔丁曼哈层，标本磨蚀严重，原作者根据基
本形态将其定为 Paramyid sp。AMNH 80801的下颌保存有一大一小两个颌孔与 Asiomy sp 不同，且 Asiomy 的颊齿大小明显比 AMNH 80801 中的大。

北美新统啮齿类动物中壮鼠占有重要的地位，其属种及数量都非常丰富。以下是 Asiomy 与北美新统常见的一些壮鼠类比较：

Paramy (Matthew, 1910; Wood, 1962; Korth, 1984; Anderson, 2008) 是非常原始的一类壮鼠类化石，当前已知最早的壮鼠 Paramy adams (Dawson and Beard, 1996) 发现于美国怀俄明州 Washakie 盆地，地层时代为早克拉克福晚期 (Clarkforkian)。Asiomy 的个体明显大于 P. adams。P. adams 的下颌有两个颌孔，大的位于 p4 下方，小的紧挨其后；颊齿中 P4 存在明显的次尖；下臼齿后小尖仅有 1 个；p4 的下三角座比下跟座略窄或者有时甚至比下跟座更宽；下颊齿中没有出现齿形的下内尖，以上这些特点与 *Asiomy* 中的有显著差别。

Paramy 属型种 P. delictus 保存有头骨、下领以及大部分的头后骨骼。Asiomy 的下颌骨形态与 P. delictus 接近，二者下领骨骨体都比较厚、高，咬肌窝前端宽，前方有明显的结节。但在颊齿结构上，Paramy 的前小尖和中附尖明显，后小尖只有 1 个，原尖与次尖的舌侧凹明显；下臼齿中下次脊多不发育，仅在 P. delictus 中有。与上臼齿中有 2 个后小尖，下臼齿发育有短的下次脊的 *Asiomy* 不同。另外，*Paramy* 中除了 P. delictus 比 Asiomy 略大以外，其他各种的个体都比 *Asiomy* 小。

Reithroparamy, **Acritoparamy** 和 Microparamy (Wood, 1959, 1962; Korth, 1984; Meng, 1990; Anderson, 2008) 与 *Asiomy* 相比个体都小，三者的下臼齿中下内尖与下后齿带之间都有浅沟相隔的特点在 *Asiomy* 中并不明显。与 *Reithroparamy* 属型种 R. delictatissimus 的下颌骨比较显示，*Asiomy* 的更为粗壮，组成咬肌窝的上、下两条棱脊相交形成的角度也较大。Acritoparamy 和 Microparamy 上臼齿中后小尖仅有 1 个，中附尖很明显；下臼齿中附尖和下小尖要比亚索米的明显，相反下外脊没有 *Asiomy* 中的发育。

Quadratomus (Korth, 1984; Anderson, 2008) 和 *Rapamy* (Wood, 1962) 的上臼齿与 *Asiomy* 一样有 2 个后小尖，但 Quadratomus 中附尖很明显，下臼齿中下外脊和下次脊缺失，下中尖很小。Rapamy 两个后小尖中大个的后小尖要比后尖还大，下臼齿中下次脊很发育，下内尖与下后齿带的分离更为明显。

Lophiparamy 和 Thishemy (Wood, 1959, 1962) 釉质层表面强烈的细褶与 *Asiomy* 不同，另外 Thishemy 的中附尖明显的。Tapany (Wood, 1962) 的个体比 *Asiomy* 大，其后小尖仅有 1 个，下三角座后端封闭，下内尖与下后齿带明显凹谷相隔，无明显的下内尖。

Pseudotomus (Wood, 1962; Anderson, 2008) 是副鼠类中唯一上臼齿宽大于长的，上臼齿中次尖往往不发育，致使冠面呈三角形，常发育有多个小尖；下臼齿下原尖后棱多不发育，下三角凹凸后开口。

Ischyromy (Wood, 1937; Black, 1968) 上臼齿中次尖明显，上下颊齿中脊都发育，下臼齿中下原尖后棱将下后尖和下原尖连接，有完整的下次脊，明显与 *Asiomy* 不同。

另外，Korth and Emry (2007) 根据北美怀俄明的壮鼠材料建立了 Metaparamy。与
Axiomys相比，Metaparamys个体要大一些，上臼齿中颊尖发育，下臼齿次小尖很小，横向发育。

讨论 Axiomys在建立之初，根据其个体大小被认为与paramyines和reithroparamyines很接近，又因为上臼齿有2个后尖及m1下内尖与下后齿带分离而归入reithroparamyines (Qi, 1987)。呼和浩特和剖面新发现的化石表明，Axiomys的下颌骨比较厚，高，咬肌窝前端宽。下颌的特征与Paramys delicatus的更接近，而与下颌纤细、咬肌窝前端较窄的Reithroparamys delicatissimus不同。另外Axiomys的P4没有出现次尖，上臼齿中次尖较小，下臼齿中下前齿带连接下尖和下尖，下尖通常缺失，下内尖和下后齿带在m1中虽有浅沟相隔，但在m2-3中该浅沟已不明显甚至二者已经相连。这些特点也都与Paramyinae更为接近，而与P4已出现次尖、臼齿中次尖相对较大、下内尖与下后齿带分离、下尖小尖明显的Reithroparamyinae有所不同(Wood, 1962; Korth, 1984; Meng, 1990)。

由于Axiomys的现有化石材料主要是牙齿，缺少头骨及头骨骨骼的信息，因此要准确确定其分类位置还有一定困难，根据已知特征将其放入Paramyinae中比较合适。

亚洲已知的壮鼠类材料比较零散，其中早段新世的Taishannomys和Acritoparamys?可能与北美的属种有关，有可能从北美迁入；中段新世的Anatoparamys和Hulgana的颊齿都比较特化，很难看出它们与其他已知属种之间的亲缘关系，很可能是一些地方性的属种；Eosisichyromys比北美已知的壮鼠亚科各属种都显得原始些，但彼此确切的关系尚不清楚。根据目前所掌握的材料，亚洲的壮鼠类之间并没有一个较大的演化关系。Axiomys与以上这些亚洲新世的壮鼠类之间有明显的特征区别。相反地，除了下颌特征与北美的Paramys delicatus接近以外，Axiomys的门齿釉质层已经变宽，并已覆盖门齿的中、后段；常有不居主尖位置的次尖，而且发育有不同程度的下次脊，这些特征与北美新世壮鼠类的特征相似(Wood, 1962)。始新世中期，亚洲和北美大陆哺乳动物之间的交流已有很多的证据(Granger and Gregory, 1943; Wall, 1980; 齐陶等, 1996; 童永生, 1997; 童永生、王景文, 2006; Ni et al., 2009), 高纬度的白令海峡在当时并没有成为两个大陆间哺乳动物迁徙的障碍。呼和浩特和剖面伊尔丁曼哈组底部发现的Axiomys，与北美的副鼠类有很多相似的特征，这对中始新世时亚洲与北美之间哺乳动物的交流又提供了一新的例证。

壮鼠科(属、种未定) Ischyromyidae gen. et sp. indet.

(图4)

标本 右M1 (L × W: 3.2 mm × 3.8 mm, IVPP V 17803), 左P4 (L × W: 3.2 mm × 4.1 mm, IVPP V 17804)。

地点和层位 内蒙古二连盆地努和延勃尔和剖面，阿山头组底部，早始新世。

描述 M1冠面呈长方形。4个尖均比较明显，前尖与后尖基本等大，次尖比原尖小，原尖与次尖在舌侧面上有细的纵沟直达舌尖顶部。前小尖大小约为前尖的1/2, 比前尖低矮，前尖与前小尖之间的连接很弱或者无连接。后尖有两个，比前小尖略小，细弱的棱脊将后尖和两个后小尖相连并与原尖相交。前、后尖带明显、低矮。无中附尖。表面的釉质层有轻微的褶皱。P4无次尖，表面釉质层褶皱纹强烈。

比较和讨论 P4中没有明显的次尖，M1中有较小的次尖，连接各尖之间的棱脊较弱
等特征与壮鼠很接近。阿山头组底部壮鼠类化石轴质层褶皱发育明显，现已知的壮鼠类中 *Thisbemys* (Wood, 1962), *Churcheria* (Storer, 1988; Anderson, 2008) 以及 *Metaparamys compressidens* (Korth and Emry, 2007) 表面轴质都有褶皱。其中 *Thisbemys* 的中附尖很明显，后脊较短； *Churcheria* 个体较小，前尖与次尖分开明显，前小尖和后小尖不突出，后脊不连续等特点与新标本差别明显。*M. compressidens* 个体较新标本大，中附尖清晰，后小尖基本与后尖等大，前小尖较新标本要小。阿山头组底部壮鼠类与已知的表面轴质有褶皱特征的壮鼠类差别比较明显，但由于化石材料很少，无法确定其确切归属。

小结 1) 内蒙古二连盆地呼和勃尔和地区阿山头组底部和伊尔丁曼哈组底部发现不同的壮鼠类化石材料，其中 *Asiomyx* 发现于伊尔丁曼哈组。新的化石材料为 *Asiomyx* 补充了下颌以及颊齿结构上的若干特征。根据现有特征比较，认为 *Asiomyx* 归入 Paramyine 更为合适。

2) *Asiomyx* 门齿轴质层、上臼齿次尖、下臼齿下次脊及下颌等结构特征与北美中新世的壮鼠类更为接近，这为中始新世亚洲与北美大陆哺乳动物之间的交流又提供一新的佐证。

致谢 李传夔、王元青、倪喜军、李淳、白滨、金迅、周伟、曾强、李士杰、高伟、李强、王国伟、时福桥、K. C. Beard 和 D. L. Gebo 参加野外工作；小哺乳动物化石的筛选工作由李祁、郭臣光完成；郭臣光挑选化石；李传夔、王伯月和童永生提供部分参考文献；李传夔、王元青和张兆群对文稿提出宝贵的意见；张文定协助完成显微照相，谨此致谢。

References

Dawson M R, Beard K C, 1996. New Late Paleocene rodents (Mammalia) from Big Multi Quarry, Washakie Basin,

Li Q (李茜), Meng J (孟津). 2010. Erlanianmys combinatus, a primitive myodont rodent from the Eocene Arshanto formation, Nuhetingboerhe, Nei Mongol, China. Vert PalAsiat(古脊椎动物学报), 48(2): 133–144

1–631

