姜寨遗址先民食谱分析

郭 怡1,2,3,4，胡耀武2,3，高 强5，王昌燧2,3，Michael P. Richards1

1. Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany, D-04103;
2. 中国科学院研究生院科技史与科技考古系，北京，100049；3. 中国科学院
人类演化实验室，北京，100044；4. 浙江大学人文学院文物与博物馆学系，杭州，310028；
5. 西安半坡博物馆，西安，710038

摘要：尽管通过 C、N 稳定同位素分析已对陕西临潼姜寨遗址先民的食物结构和耕作农业进行了初步探索，但研究中的一些重要问题，如不同时期先民食物结构的演变，姜寨与半坡、史家先民食物结构间的差异等，依然未能深人讨论。为此，本文对姜寨遗址出土的不同时期（一期、二期）人骨进行了 C、N 稳定同位素分析，试图揭示先民食物结构的演变历程，探索姜寨与半坡、史家先民食物结构间的差异，并初步探讨产生这种差异的可能原因。人骨的 δ13C 平均值（−9.7 ± 1.0‰）和 δ15N 平均值（8.5 ± 0.5‰），表明粟类食物（包括谷类作物以及依赖于谷类作物的动物等）在姜寨先民食谱中占据主要地位，且动物资源在食物中的比例相对较低。两期先民的 δ13C 和 δ15N 值，无显著性差异，表明先民一直从事耕作农业以及家畜的饲养活动。食谱分析并未发现第二期先民食用更多野生动物的证据，这可能与先民样原本就有限，二期先民食用的野生动物比例上升较小，动物类食物在先民食谱中所占比例较小等有关。对比地理位置相近、文化年代相近的姜寨、史家、半坡遗址先民 δ13C 值，姜寨（−9.7 ± 1.0‰，N = 19）与史家（−10.0 ± 0.7‰，N = 9）接近，而远高于半坡（−14.8 ± 1.9‰，N = 5），表明半坡遗址先民的食物结构与姜寨基本一致。我们认为，不同遗址间先民 δ13C 值的差异，可能受样本身来源等的影响。

关键词：古食谱分析；耕作农业；稳定同位素分析；古环境；姜寨遗址
中国分类号：K871.13, K892.25 文献标识码：A 文章编号：1000-3193 (2011) 02-0149-09

1 前言

大量出土的与粟类（粟和黍）相关的植物遗存以及微体化石，如植物种子、果实、植硅体、淀粉粒等，为探讨我国耕作农业的起源与发展提供了丰富的实物资料。山西下川11、北京东胡林2、北京转年3、河北南庄头4、河北于家堡5等新石器早期遗址发现的磨盘、磨棒等农业工具，很可能与粟类的利用有关；10000—7000 BP，黄河流域和西辽河流域等遗址，如河南舞阳贾湖6、河北磁山7、甘肃大地湾8、内蒙古兴隆沟9等，均发现了与粟类相关的植物遗存，表明耕作农业很可能已得到了初步发展；7000—5000 BP，粟类遗存的分布更为广
泛，其在陕西半坡^{[10]}、陕西姜寨^{[11]}、甘肃临泽^{[12]}、山东三里河^{[13]}等大批遗址^{[14]}中均有所发现，反映了粟作农业得到较大发展；5000—4000 BP，位于黄河流域的山西陶寺^{[15]}、青海柳湾^{[16]}等遗址、西藏昌都卡诺遗址以及西辽河流域的小河沿文化中都发现了粟黍，暗示粟类作物业已普遍种植^{[5]}。

发韧于上个世纪七十年代的稳定同位素分析，通过测定人（动物）骨中的 C、N 稳定同位素组成，为揭示粟作农业在先民生活方式中的地位，探索粟作农业的起源与演进提供了新的思路和证据^{[17]}。例如，对山东小荆山遗址（8200—7500 BP）人骨^{[18]}和甘肃大地湾遗址（7900—7200 BP）动物骨^{[19]}的 C、N 稳定同位素分析结果表明：在前仰韶文化时期，C、N 类食物，包括粟类作物或以粟类为食的动物，在先民（动物）食谱中比例较小，暗示粟作农业仍处于初级阶段。

陕西临潼姜寨遗址是仰韶文化时期的一处重要遗址，不仅出土了大量农具，如石铲、骨铲等，而且还发现了粟类的植物遗存（黍），表明先民业已从事粟作农业^{[11]}。尽管 Pechenina 等已对该遗址出土 5 例人骨以及相邻半坡遗址（5 例）和史家遗址（9 例）进行了 C、N 稳定同位素分析，对粟作农业在先民生活方式中的作用和地位进行了初步探讨^{[20]}，但研究中存在的一些重要问题，如姜寨先民在不同文化期食物结构的演变以及与半坡、史家先民食物结构间的差异等，未能深入展开讨论。为此，本文通过对姜寨遗址不同时期人骨进行稳定同位素分析，试图揭示先民食物结构的演变历程，探索姜寨与半坡和史家先民食物结构间的差异，并初步探讨产生这种差异的可能原因。

2 材料与方法

2.1 样品选择

选取姜寨一期（半坡类型）和二期（史家类型）未扰扰动的墓葬所出人骨共 16 例。样品的墓葬编号、时代、性别及年龄，如表 1 所示。

2.2 骨胶原的制备

样品制备依据 M. P. Richards 和 R. E. Hedges 文中骨胶原的提取法进行^{[21,22]}。机械加工去除骨样表面污染后，取 300—500mg 放入 0.5mol/L 的 HCl 溶液，于 5℃的环境下静置脱钙，每 2—3 天换新鲜酸液，直至骨样松软，溶液无明显气泡为止。去离子水清洗至中性，在 0.001mol/L 的磷酸环境下，70℃明胶化 48 小时，热滤，经 Millipore Amicon Ultra-4 超滤后收集分子量 > 30K 的溶液，冷冻干燥后获得骨胶原，称重并计算骨胶原产率（骨胶原含量/骨样重量）。

2.3 C、N 稳定同位素的测试

于元素分析仪-同位素比值质谱仪（EA-IRMS）上测试骨胶原 C、N 含量及同位素比值。C 同位素的分析精度为 ±0.1‰，N 同位素的分析精度为 ±0.2‰。C 同位素的分析结果以相对 V-PDB 的 δ^{13}C 表示，N 同位素比值相对于空气或大气中的氮气以 δ^{15}N（AIR）表示。

本次实验 16 例样品皆提取出骨胶原，其骨胶原含量、C 和 N 含量、C 和 N 稳定同位素比值如表 1 所示。根据骨胶原提取率（5%）、胶原中 C 含量（15.3%—47%）、N 的含量（5.5%—17.3%）及 C/N 摩尔比值（2.9—3.6）的判断标准，我们对样品进行了污染判断^{[23,24]}，发现样品 M162 的 C/N 摩尔比值超出正常范围，属于被污染样品，应予剔除。其余
15 例样品的骨胶原含量虽较低（均值为 0.7 ± 0.4%），表明大部分骨胶原在长期埋藏过程中已遭到分解，但其他指标（C 元含量 42.3 ± 1.2%，N 均含量 14.8 ± 0.5%, C/N 摩尔比均值为 3.3 ± 0.1）皆符合未污染样品的要求，故而认为这 15 例样品应皆为未污染样品，可用作稳定同位素分析。

表 1 样品测量值

<table>
<thead>
<tr>
<th>时代</th>
<th>样品号</th>
<th>性别</th>
<th>年龄</th>
<th>δ¹³C ‰</th>
<th>δ¹⁵N ‰</th>
<th>%C</th>
<th>%N</th>
<th>C/N</th>
<th>骨胶原含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>姜寨一 sworn</td>
<td>M552</td>
<td>女</td>
<td>20 岁左右</td>
<td>-8.5</td>
<td>8.1</td>
<td>43.2</td>
<td>15.5</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>M596</td>
<td>男</td>
<td>26-35</td>
<td>-10.7</td>
<td>9.7</td>
<td>43.3</td>
<td>15.1</td>
<td>3.3</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>M149</td>
<td>男</td>
<td>36-55</td>
<td>-9.1</td>
<td>8.2</td>
<td>42.8</td>
<td>15.3</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>M150</td>
<td>女</td>
<td>24-35</td>
<td>-10.9</td>
<td>9.0</td>
<td>38.8</td>
<td>13.6</td>
<td>3.3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>M151</td>
<td>男</td>
<td>36-55</td>
<td>-8.9</td>
<td>9.1</td>
<td>42.3</td>
<td>15.0</td>
<td>3.3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>M162</td>
<td>女</td>
<td>20 岁左右</td>
<td>-9.9</td>
<td>8.5</td>
<td>42.0</td>
<td>13.3</td>
<td>3.7</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>M181</td>
<td>女</td>
<td>20 岁左右</td>
<td>-10.0</td>
<td>8.6</td>
<td>41.0</td>
<td>14.6</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>M186</td>
<td>男</td>
<td>24-35</td>
<td>-9.0</td>
<td>8.1</td>
<td>42.7</td>
<td>15.4</td>
<td>3.2</td>
<td>1.0</td>
</tr>
<tr>
<td>姜寨二 sworn</td>
<td>M75</td>
<td>女</td>
<td>成年</td>
<td>-9.7</td>
<td>8.6</td>
<td>41.9</td>
<td>14.9</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>M84;10</td>
<td>女</td>
<td>40 岁左右</td>
<td>-10.9</td>
<td>8.8</td>
<td>42.3</td>
<td>15.3</td>
<td>3.2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>M112</td>
<td>女</td>
<td>26 岁左右</td>
<td>-8.8</td>
<td>7.8</td>
<td>42.4</td>
<td>15.1</td>
<td>3.3</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>M112;10</td>
<td>女</td>
<td>30 岁左右</td>
<td>-8.7</td>
<td>8.4</td>
<td>42.2</td>
<td>14.4</td>
<td>3.4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>M112;11</td>
<td>女</td>
<td>20-22</td>
<td>-9.8</td>
<td>8.1</td>
<td>43.3</td>
<td>14.9</td>
<td>3.4</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>M198;30</td>
<td>女</td>
<td>30</td>
<td>-11.5</td>
<td>8.3</td>
<td>43.2</td>
<td>14.5</td>
<td>3.5</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>M202;36</td>
<td>女</td>
<td>26-29</td>
<td>-8.9</td>
<td>8.2</td>
<td>43.1</td>
<td>14.6</td>
<td>3.4</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>M238;1</td>
<td>女</td>
<td>42-46</td>
<td>-12.7</td>
<td>9.9</td>
<td>42.5</td>
<td>14.0</td>
<td>3.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

2.4 数据分析

以美国 SPSS16.0 进行数据的统计分析，Origin7.0 做图。

3 结果与讨论

3.1 食谱结构分析

以未污染的 15 例样品的 δ¹³C 和 δ¹⁵N 值做散点图，如图 1 所示。由图可以看出，先民的 δ¹³C 值，变化范围为 -12.7%e—-8.5%e，平均值为 -9.9 ± 1.2%e，表明 C₄ 类食物在先民食谱中居主导地位；δ¹⁵N 值变化范围为 7.8%e—9.9%e，平均值为 8.6 ± 0.6%e。与其它样品相比，样品 M238;1 具有显著的 C、N 同位素比值（δ¹³C 值为 -12.7%e, δ¹⁵N 值为 9.9%e），将单独进行讨论。

姜寨遗址出土的粟，表明先民很可能业已种植粟类作物 [25]。黍和粟均属粟类植物（C₄ 类），在稳定同位素上与 C₃ 类植物存在明显差异 [26]。由于目前对 C4 的稳定同位素值缺乏报道，故而采用现代粟的 δ¹³C 值 (-11.7%e) 近似代替 [27]。考虑到化石燃烧对现代大气 C 同位素值的影响 (1.5%e [28])，中国新石器时代粟类作物 δ¹³C 平均值应为 -10.2%e。若以 -10.2%e 和 -26.5%e 分别代表新石器时代粟类作物（粟、黍）和 C₃ 类植物的 δ¹³C 值 [29]，C 同位素的生物来源的富集为 5% [30]，而粟的 C 同位素在营养级间的富集（1%e 左右），则按简单的二元混合模型（two-end member mixing model） [31,32]，即可大致估算粟类
食物（包括其类动物以及依赖于其类副产品的动物）在先民食物结构中所占比例。计算得其类动物在先民食物结构中比例为 61.3%—80.0%, 均值为 72.6 ± 5.8% (N = 14), 表明其类动物, 包括其类动物以及依赖于其类副产品的动物, 在姜寨先民生活方式中占主导地位。

与 C 同位素不同, N 同位素在沿营养级上升时, 存在着明显的富集现象, 即每上升一个营养级, δ²⁰N 值就增加 3%e—5%e（34）。虽然不同地区, 不同环境条件下 δ²⁰N 值有一定的变化（34），但一般认为，杂食类动物的 δ²⁰N 值约为 7—9%e, 而食肉类则常在 9%e（35）。本遗址先民的 δ²⁰N 均值为 8.5 ± 0.5%e (N = 14), 表明先民属于杂食类, 食物中包含了一定量的肉食资源, 可能来源于其类动物为食的家畜。此外, 先民较大的 δ²⁰N 值变化范围（7.8%e—9.7%e）, 表明先民的肉食来源存在一定差异。其中, δ²⁰N 值处于 7—9%e 杂食范围内的先民有 12 例（一期 5 例, 二期 7 例）, 占所有未污染样品的 85.7%, 表明绝大部分先民, 主要依赖于以栽培农业为基础的植物类食物, 而摄入的肉食资源相对较少。δ²⁰N 值大于 9%e 的有 2 例样品（一期）, 占所有未污染样品的 14.3%, 表明依赖于栽培农业副产品的家畜在这些先民食物中所占比例较高。

研究指出, 骨胶原中的 C 主要来自于食物中的蛋白质部分, 而 N 同位素主要反映了食物中的动物蛋白。因此, 通过对先民 δ¹³C 值和 δ²⁰N 值相关性分析, 可进一步探索先民的肉食来源; 如果两者显著相关, 则表明先民食物中动物类食物占大多数, 暗示先民生活方式以渔猎为主; 反之则说明先民以植物类食物为主, 其生活方式可能以采集或农业为主（39）。去除污染样品 M162 和异常值 M238:1 后, 观察图 1 可以发现其余样品中并无明显的异常值, 可以进行相关分析。分析结果表明所有样品 δ¹³C, δ²⁰N 值不相关（r = -0.495, P = 0.072 > 0.05, N = 14）, 表明先民食物中植物类植物为主, 这很有可能与当时较为发达的渔猎业有关。对姜寨遗址出土原始工具的分类统计结果指出农业类工具占所有生产工具的 60% 以上（36）, 结合出土的残存遗物及木炭痕迹等遗存, 可以判断原始农业在当时的经济活动中占主导地位。

样品 M238:1 具有最低的 δ¹³C 值 (−12.7%e) 和最高的 δ²⁰N 值 (9.9%e), 表明其食物虽兼具 C₂ 类和 C₁ 类, 但 C₂ 类食物的比例 (54.0%) 要远远高于 C₂ 类食物 (72.6%) 且肉食比例最高, 表明该先民很可能来自异地。但考古资料显示: 样品 M238:1 所属墓葬 M238,
为长方形竖穴土坑墓，墓向朝西，共出土了 19 具骨架，分上下三层叠置，属于多人一列叠压式二次合葬墓。这种埋葬习俗，在二里头文化中极为常见。出土的铜、铁等随葬器中，既包括了与史家遗址相似的铜鼓，也出土了具有姜寨特色的石器、玉器等 [11]。从墓葬形制、随葬品等方面，无法对样品 M238:1 是否属于移民提供依据。今后，进一步开展该墓葬出土的所有人骨稳定同位素的比较分析，将有望为解决这一问题提供更多的线索。

3.2 先民食物结构的演变

通过对不同時期先民 δ^{13}C, δ^{15}N 值的比较分析，可为揭示先民食物结构的演变及生活方式的变化提供证据。

去污染样品 M162 和异常 值 M238:1 后，二期先民 (N = 7) 的 δ^{13}C 和 δ^{15}N 均值分别为 -9.8 ± 1.1‰和 8.3 ± 0.3‰，相比一期先民 (N = 7) 的 δ^{13}C (-9.6 ± 0.9‰) 和 δ^{15}N 均值 (8.7 ± 0.6‰)，稍有变化。先民 δ^{13}C, δ^{15}N 值的独立样本 T 检验显示，先民的 δ^{13}C 值 (t = 0.314, P = 0.759 > 0.05, N = 14) 和 δ^{15}N 值 (t = 1.419, P = 0.181 > 0.05, N = 14) 的差异，均不显著，表明两期先民的动物结构基本一致，即先民一直从事粟作农业以及家畜的饲养活动。然而，最新的动物考古研究显示，从姜寨第一期至第二期，家畜等野生动物所占比例如上升，猪等家养动物的比例下降 [12]，这似乎表明先民更为依赖狩猎活动，而减少了家畜的饲养活动。那么，如何理解稳定同位素的动物考古研究在探索先民食物结构上的差异呢？

我们认为，造成这种情况的原因可能有三点：1) 本研究中每期先民的个数均为 7 个，相对动物遗存来说，数量明显偏少，因而不能很好地探明不同时期内先民食物结构的变化；2) 根据最小个体数方法对各层出土动物骨骼的统计表明，家畜类型中野生动物比例较半坡类型层上升 10% [38]，两期差别较小，对先民稳定同位素比值的影响不甚明显；3) 总体上，粟作作物对先民食物的贡献所占比例较高，而动物类 (包括家畜和野生动物) 占的比例相对较低，家畜和野生动物比例的变化，对先民稳定同位素比值的影响较小，显然，为深入探索姜寨先民食物结构演变的过程以及其与动物比例变化的相互联系，尚需我们采取更多动物和植物样品，进一步加以细致研究。

3.3 姜寨、史家与半坡遗址先民食物结构的差异

陕西西安半坡遗址 (6800—6300 BP) [10]，陕西渭南史家遗址 (6300—6000 BP) [39] 和陕西临潼姜寨遗址 (6900—6600 BP) [11] 皆位于关中平原，地理位置邻近，文化年代均属于仰韶文化。那么，这三个遗址先民的食物结构以及粟作农业的发展水平是否存在差异呢？

图 2 为这三个遗址先民 δ^{13}C 值的散点图，数据源自 Pechenka 等 [20]、蔡连珍等 [48] 以及本研究。从图可以看出，姜寨遗址的先民 (共 19 例，包括本研究 14 例和 Pechenka 的 5 例) 与史家遗址的先民 (共 9 例) 具有相似的 δ^{13}C 值，而半坡遗址的先民 (共 5 例，包括 Pechenka 的 1 例和蔡连珍的 4 例)，其 δ^{13}C 值明显偏负，这表明：相对于姜寨和
对姜寨遗址第一期和第二期文化出土 16 个兽骨样品进行稳定 C、N 同位素测试，结果表明：

1. 先民 δ¹³C 均值为 -9.7 ± 1.0‰，表明粟类食物（包括粟类作物以及依赖于粟类作物的动物等）在姜寨一期和二期先民的食物结构中占绝对主导地位（72.6 ± 5.8%）；先民 δ¹⁵N 均值为 8.5 ± 0.5‰，表明先民的食谱中动物资源相对较低。先民 δ¹⁵N 值变化范围较大（7.8%—9.7‰），暗示其肉食来源有较大差异。

2. 对先民 δ¹³C 值和 δ¹⁵N 值相关性与分析结果表明所有样品 δ¹³C, δ¹⁵N 值不相关，暗示先民食物来源中包含较多的植物类食物，这很有可能与当时较为发达的粟作农业密切相关。

3. 对比两期先民 δ¹³C, δ¹⁵N 值，发现其食谱结构并无显著性差异，表明两期先民的食物结构基本一致，即先民一直从事粟作农业以及家禽的饲养活动。食谱分析并未发现第二期先民食用更多野生动物的迹象，可能原因是先民兽遗品偏少、第二期先民食用的野生动物比例上升较小，动物类食物在先民食谱中所占比例较小等。

4. 样品 M238:1 具有与姜寨大部分先民不同的 δ¹³C, δ¹⁵N 比值，具体原因仍需进一步探讨。

5. 对比地理位置相邻、文化年代相近的姜寨，史家，半坡遗址先民 δ¹³C 值，姜寨与史家
参考文献：

Stable Carbon and Nitrogen Isotope Evidence in Human Diets Based on Evidence from the Jiangzhai Site, China

GUO Yi\(^1,2,3,4\), HU Yao-wu\(^2,3\), GAO Qiang\(^5\), WANG Chang-sui\(^2,3\),
Michael P. RICHARDS\(^1\)

(1. Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology,
Leipzig, Germany, D-04103; 2. Department of Scientific History and Archaeometry,
Graduate University of Chinese Academy of Sciences, Beijing 100049;
3. Laboratory of Human Evolution and Archaeometry of Chinese Academy of Sciences, Beijing 100044;
4. Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou 310028;
5. Xi’an Ban Po Museum, Xi’an 710038)

Abstract: Although human dietary evidence from the Jiangzhai site has already been investigated, there are some important issues that have not been discussed clearly, such as whether the ancient diets changed between periods, and whether there were any differences in human diets among the Banpo, Shijia and Jiangzhai sites. Considering these concerns, stable carbon and nitrogen isotopic analysis on ancient human bones from the Jiangzhai site was reanalyzed. The values of carbon isotopes of human bone collagen (\(-11.5\% - 8.5\%\), with a mean value of \(-9.7 \pm 1.0\%\), \(N = 14\)) and the archaeological remains of millet (\(C_4\) plant) revealed that millet was the primary food resource for humans. The values of nitrogen isotopes (7.8\% - 9.7\%, with a mean value of 8.5 \pm 0.5\%, \(N = 14\)) suggested that animal resources contributed a low proportion of the human diets. There was no correlation between human \(^{13}\)C data and \(^{15}\)N data, which suggested that the ancient human diet from this site was mainly based on highly developed millet agriculture at that time. In addition, there was no significant difference in the human diets between the two periods, which was a different result from the archaeozoological results. This result was probably because that the sample size of humans was small, the ratio of wild animal meat in human diets in the second period increased only a little, and meat was not a significant resource to human diets in both periods. Although the nearby Jiangzhai, Shijia and Banpo sites belonged to the same period, the mean \(^{13}\)C value of human bones from the Jiangzhai site (\(-9.7 \pm 1.0\%\), \(N = 19\)) was similar to that of the Shijia site (\(-10.0 \pm 0.7\%\), \(N = 9\)), but much higher than that of the Banpo site (\(-14.8 \pm 1.9\%\), \(N = 5\)). These results suggested that millet agriculture at the Banpo site was inferior to that of the Jiangzhai and Shijia sites, which might be related to the small sample size of humans at the Banpo site and the differing paleoenvironments of these three sites.

Key words: Paleodiet; Stable isotopes; Millet agriculture; Paleoenvironment; Jiangzhai site