高精度热电离质谱铀系法测定
北京猿人遗址年代初步结果

沈冠军
(贵州大学化学系，贵阳 550025)

顾德隆
(Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089–0740, USA)

B. Gahleb
(GEOTOP, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada)

袁振新
(中国科学院古脊椎动物与古人类研究所，北京 100044)

摘 要

热电离质谱法可用比经典的 α 能谱法少一个数量级的样品，实现高一个数量级的测量精度，本文报道了用这一新技术测定北京猿人遗址 1-2 层钙板样 BZC-3 的铀系年代。据四次平行分析的加权平均值，该样应为 41 ± 1 万年，代表了北京猿人五号头骨的最小年龄，四次分析（样品未混匀）的结果在误差范围内一致，α 能谱二种铀系法结果一致及加速器质谱法未能检出 ^{14}C，表明样品有较好的封闭性，本文结果不支持亚洲直立人演化较慢和中国有二种人类（晚期直立人与早期智人）并存的假设。

关键词 北京猿人遗址，热电离质谱，钙乳石类碳酸岩，铀-不平衡系定年法

1 前 言

北京猿人遗址是世界上最重要的旧石器时代早期遗址之一，这一举世闻名的“早期人类文化宝库”的年代位置，对人类及其文化演化的研究有十分重要的意义，故一直是引起相关学科密切关注的研究热点。

1977—1979 年，中国科学院古脊椎动物与古人类研究所组织了对北京猿人遗址的综
合研究。作为这一综合研究的重要组成部分，国内有关研究单位用裂变径迹、铀不平衡系、热释发光、氨基酸消旋和古地磁等定年法，测定了遗址剖面上、下各层堆积的年代。综合多种方法结果得出的结论为：最底部第13层为约70万年，出土人类化石的最低层位第10层为约50万年，最上部第1—3层为约23万年（赵林森等，1985）。之后，黄培华等（1991），郭士儒等（1991），曾闻训等（1991）又分别用电子自旋共振（ESR）、裂变径迹和铀不平衡系法对该遗址年代作了进一步研究，所得结果与上述年代框架大致相符。

若从机理上剖析上述年代测定法，可发现它们均或多或少地引入了一些难以或尚未充分验证的假设前提，故从总体上说，周口店第一地点的年代仍有进一步研究的必要。最近十多年来，在数万至数十万年这一区段内，相对纯净致密、结晶良好的钾长石类碳酸岩的铀系年代显示出了较高的可信度（沈冠军，1987）。周口店第一地点堆积中有多层钙板发育（杨子儒等，1985）。因此，新生碳酸岩铀系定年有可能为该遗址的年代位置提供可信依据。

遗址现存1—2层堆积位于猿人洞南裂隙顶部、山顶洞原生北洞口之东的H地点。于此剖面可看到与棕红色砂质粘土互层的5层钙板。我们曾于最上面的第1层采得层位意义清楚、能满足测年要求的样品，用α能谱对其中一样（BZC-3）3次230Th/234U 分析给出的年代结果为42$^{+11}_{-5}$万年（沈冠新等，1991），这与基于骨化石铀系定年的已有结论差异显著。但由于该样铀-钍同位素比已接近平衡，由此算得的年代结果误差范围较大，难以给出1—2层堆积的确切年代，也将难以区分与以下各钙板层间的年代距离。

一般认为230Th/234U 法测年不能越出35万年。但实际上，铀系法的测年范围受制于同位素强度比的测量精度及样品的封闭性。80年代中后期发展起来的热电离质谱（TIMS）铀系定年法，是中、晚更新世地质年代研究革命性的突破。这一新技术可用比经典的α能谱法则一个数量级的样品，实现高一个数量级的数据精度（Edwards et al., 1986/87），由于质谱法测得的高灵敏度、高精度，使严格剔除样品、大幅度提高数据精度并以此拓展铀系法的测年范围成为可能。已有将此法成功应用于35万年以外碳酸盐样测年的报道（Ludwig et al., 1992）。其应用于北京猿人遗址，应可给出高分辨率的年代界限。

BZC-3 样的230Th/234U 与227Th/230Th 年代在误差范围内一致，表明其封闭性能良好，或至少未被显著风化。该样因此被选为热电离质谱法研究的首样样品，本文将报道此项研究的初步结果。沈冠军、金林红（1991）已描述该样性状，其剖面位置见图1。

2 分析及测试

本文实验部分工作在加拿大魁北克大学蒙特利尔分校的同位素地球化学与地质年代研究中心进行。所有化学分析操作均在一Class 100的超净实验室内进行。所用仪器为石英或聚四氟乙烯制品，使用前经浓酸回流煮洗。实验用水由Milli-Q超纯水系统生产，所用试剂或为Ultrex 级超纯试剂，或经亚沸点蒸馏纯化。

BZC-3 样在作α能谱年代测定时，已经仔细剔除，在去除有碎屑物质污染的表层和疏松多孔的部分后，敲成豆大的颗粒。为选取作质谱研究的样品，我们将样品颗粒置于纯水中，经超声波震荡洗涤，之后在灯光下逐粒仔细观察，发现不少这样的颗粒仍有一些
小孔(部分有泥砂填充)或有泥砂含量较高的夹层。取作本研究用的,均系半透明状,无明显孔隙及泥砂夹层的颗粒。

每次分析取样约4克，样品在～450℃灼烧二小时后，溶于1:1HNO₃。加入²²⁹Th—²³³U—²³⁶U示踪剂，加热放置过夜，以确保同位素交换平衡。U, Th 在Fe(OH)₃共沉淀载体预富集后，经二步阴离子交换分离纯化(Edwards et al., 1986/87)，纯化后微升量级的U, Th样品溶液分别点在涂敷石墨的单链带上，其上再复一层石墨。U, Th 同位素比用一 VG Sector型热电离质谱仪测量，该仪器配置有一10cm静电分析器及一Daly脉冲计数探测器,一个原子质量单位的丰度灵敏度为10⁻⁶ (Garipey et al., 1994)。所用镍带为经区域融熔纯化高纯产品，使用前经预热除去。测试表明，全过程本底可忽略不计。

标准示踪剂U, Th同位素比用的标准物质为一国际有关实验室通用的称为 Harwell Uraninite (HU-1) 的前寒武纪氧化铀石，其²³⁴U/²³⁸U 和²³⁶Th/²³⁴U 被认为处于早期平衡状态 (Ludwig et al., 1992)。我们对该基准 8 次平行分析所得²³⁴U/²³⁸U 加权平均值为1.0063±0.0013。所用 U, Th 同位素衰变常数同 Ludwig et al., (1992)。

3 结果及其可信度

表1给出了 BZC-3 样 4 次质谱分析所得的同位素强度比及年代结果，所示误差为 ±2σ 测量统计误差。图 2a, 2b 分别显示了²³⁴U/²³⁸U 和²³⁶Th/²³⁴U 值的分布及其加权平均值。由此算得的年代结果为 41±1 万年。与α能谱法结果(42±11 万年)良好吻合，但误差范围大大缩小。

<table>
<thead>
<tr>
<th>分析号</th>
<th>鈾含量 (ppb)</th>
<th>²³⁶Th/²³²³Th</th>
<th>²³⁶⁰U/²³⁸⁸U</th>
<th>²³⁶⁰Th/²³⁶⁰U</th>
<th>²³⁸⁰Th 年龄 (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZC-3-1</td>
<td>85.0±0.3</td>
<td>307.9±4.1</td>
<td>1.1393±0.0029</td>
<td>1.0177±0.0059</td>
<td>398±7</td>
</tr>
<tr>
<td>-2</td>
<td>65.8±0.3</td>
<td>209.7±1.5</td>
<td>1.1440±0.0039</td>
<td>1.0193±0.0056</td>
<td>399±7</td>
</tr>
<tr>
<td>-3</td>
<td>75.6±0.3</td>
<td>432.1±2.9</td>
<td>1.1343±0.0052</td>
<td>1.0198±0.0069</td>
<td>410±7</td>
</tr>
<tr>
<td>-4</td>
<td>86.9±0.2</td>
<td>298.1±1.4</td>
<td>1.1438±0.0036</td>
<td>1.0288±0.0045</td>
<td>436±7</td>
</tr>
<tr>
<td>加权平均</td>
<td></td>
<td>1.1409±0.0019</td>
<td>1.0226±0.0028</td>
<td>414±13</td>
<td></td>
</tr>
</tbody>
</table>
图 2 BZC-3 样 4 次质谱测定所得 234U/238U（a）和 230Th/234U（b）值的分布及其加权平均值

Distribution and weighted mean of four 234U/238U（a）and 230Th/234U（b）ratios measured by TIMS

样品铀含量范围为 0.067—0.087ppm，内部差异已呈显著性。如将质谱分析样品作为一总体，其铀含量又明显低于取作 α 能谱分析的样品（0.10—0.12ppm），样品 230Th/232Th 比值为 298—432，明显高于取作 α 能谱法分析的样品（32—56），这表明铀与天然铀在样品的分布是不均匀的，严格剔选样晶使铀含量下降，230Th/232Th 值上升。但质谱与 α 能谱法所得的 234U/238U 与 230Th/234U 值均在误差范围内一致，说明铀、钍分布的不均匀性在样品生成时已存在，非后期风化所致。

定年数据的可信度主要有二个因素决定：样品的封闭性及分析测试的精确度。样品构成封闭体系的不完整性，应是本文结果的主要误差源。以下事实支持样品的封闭性：

1）分析样品未经混匀，因本身随机有无序的风化过程不大可能产生一致有序的结果，4 次分析结果的一致性表明样品在微观尺度上未被扰动，可引为样品未被显著风化的证据。

2）已提及，该样用 α 能谱法测得的 230Th/234U 与 227Th/230Th 年龄在误差范围内一致，表明样品封闭性能良好，或至少未被显著风化。

3）为进一步验证样品的封闭性，我们测定了该样的 14C 含量，结果在法国等放射性研究中心加速器质谱仪的探测限之下，表明在最近数万年内样品与环境无明显的碳同位素的交换，这是样品封闭性能良好的又一有力证据。

质谱测定的精密度很高，与其它误差因子相比，统计误差对结果的影响不大。上述 4 次分析结果在误差范围内一致，说明与测量统计误差相比，分析、测量过程无重要的偶然
误差。但质谱数据包含多项系统误差，如探测器的质量歧视、轴同位素分馏（轴同位素分馏已被校正）、同量有机离子的干扰等，均可影响数据的准确度。在使用 HU-1 作基准后，上述误差因素已在很大程度上被抵消。基准物的 $^{234}\text{U}/^{238}\text{U}$ 及 $^{230}\text{Th}/^{234}\text{U}$ 是否真正处于长期平衡状态，成为测量误差的主要来源。HU-1 的二种 U-Pb 年龄在 0.5%内吻合，α 谱测得的 $^{234}\text{U}/^{238}\text{U}$ 为 0.9981 ± 0.0088，$^{230}\text{Th}/^{234}\text{U}$ 在 0.5%内为平衡值，表明其 $^{234}\text{U}/^{238}\text{U}$ 及 $^{230}\text{Th}/^{234}\text{U}$ 应非常接近于平衡值 (Ludwig et al., 1992)，现有偏移的话，也应不大于 0.5%。如是，给 BZC-3 年代值带来的误差为约 ±3 万年。即使如此，本文结果仍是为一精密度很高的年代基准点。在下一阶段的研究中，我们将验证 HU-1 作为轴同位素比基准的可信度，我们将注意有关实验室对这一国际通用基准的验证校核。

4 讨 论

BZC-3 取于猿人洞 H 地点上方之第 1—2 层，1966 年由裴文中主持，于此从保留着完整剖面的第 1—2 层下挖，至第 3 层发现了额骨、顶骨、枕骨等多块人类化石，与 1934 年发现的二块头骨破片恰好吻合，遂拼合成相当完整的北京猿人第五号头骨。现存剖面即为 1966 年发掘所保留。该处堆积产状平缓，与文化堆积层次的钙板有清晰的水平纹理，局部还有小石片发育，表明确系原地生成，未经任何人为或自然力的扰动，据此 BZC-3 可代表猿人洞第 1—2 层的年代。

H 地点上部地层有数层钙板的发育，表明在洞顶垮塌的过程中，该处应是猿人洞最后有洞顶遮蔽的孤島，且此残留洞顶应在相当长一段时间内保持稳定，北京猿人方可于此长期居住，留下了数米厚的堆积和丰富的遗物。H 地点地层剖面保存完整，第 1—2 层与出土五号头骨化石的第 3 层间叠压关系清楚。BZC-3 因此可代表五号头骨的上限（依地层学定义）年龄，即五号头骨应大于 40 万年。

晚期直立人与早期智人的界限，是国内外古人类学研究中争议颇多的一个领域，由于北京人是公认的典型直立人，第五号头骨作为这一家族中最年轻的成员，其确切的年代位置在上述争议中尤为重要。多种假说，如晚期直立人和早期智人镶嵌并存说及亚洲直立人演化较慢说，均与基于骨化石轴系定年的北京猿人第五号头骨 23 万年这一数据直接相关。

随着年代学、古人类学等学科研究的进展，晚期直立人与早期智人界限的年代位置有前移的趋势。10 多年前，当年代学研究表明有明显尼人特征的 Taunavel 人为大 35 万年时，不少古人类学家认为这一年龄太小，与已知的人类进化格局不符。近年来欧洲又陆续发现了与 Taunavel 人和 Petralona 人形态相似的 Atapuerca 人的 6 枚头骨化石 (Arsuage et al., 1993) 和 Atamura (Dorozynski, 1993) 人化石，尽管古人类学家们对这些化石证据的分类位置尚有争议，但已比较一致地接受了它们大于 30 万年的年代位置 (Stringer, 1993)。原先认为约 35 万年的代表直立人向早期智人演化的埃塞俄比亚的 Bodo 头骨，最新的激光测年 Ar/Ar 法的测定结果为约 60 万年 (Clark et al., 1994)。与此相比，周口店五号头骨的 23 万年就显得过于年轻，需引人有关人类演化的新假说方可得以解释。基于本文结果，站在同位素年代学的角度上，目前尚难以得出亚洲和非洲直立人演化孰快孰慢。
的结论，也没有中国晚期直立人和早期智人并存的确凿证据。

本文是热电锂子质数串法应用于旧石器时代早期遗址年代研究的首试，展示了精确测定30—50万年间洞穴遗址年代的良好前景，进一步的研究正在进行过程中。我们已在北京猿人遗址东坡第5层上部采得相当纯净致密、结晶良好的样品，如经仔细系统的探查，在其它层位也有可能找到适于定年的碳酸盐样。初步测定结果表明采于东坡第5层那个样品的$^{230}\text{Th}/^{234}\text{U}$值已很接近于平衡，为此有必要进一步提高数据精度、排除一切可能的误差因子，以给出确切的年代值。最近，高精度质谱法测定^{231}Pa又获突破（Pickett et al., 1994）。预质谱法$^{230}\text{Th}/^{234}\text{U}$和$^{231}\text{Pa}/^{235}\text{U}$年代的相互对比，将以$\alpha$能谱法所不可比拟的确切性揭示钟乳石样所载年代信息的可信度，从而为周口店及其它重要人类遗址提供更为可靠的年代界限。

致谢：美中学术交流委员会为沈冠军访美、加提供资助，加拿大魁北克大学蒙特利尔分校的Centre de Recherche en Geochimie Isotopique et en Geochronologie (GEOTOP)负责人C. Hillaire-Marcel教授提供了测试所需的设备和经费，法国Centre des Faibales Radioactivites的M. Arnold测定了BZC-3的^{14}C含量，美国自然科学基金SBR-9420777也提供了部分经费，蔡炳熔、金林红协助采、制样，作者们于此向上述机构、个人致谢。

参考文献

沈冠军. 1987. $^{227}\text{Th}/^{230}\text{Th}$法的应用及钟乳石灰系年龄的可信度. 科学通报，32(3): 200—203。
杨子宽，刘旭智，钱方等. 1985. 周口店地区晚新生代地层研究. 见: 北京猿人遗址综合研究. 北京: 科学出版社，1—87。
郭士伦，刘顺生，孙盛芬等. 1991. 北京猿人遗址第四层裂变长链法年代测定. 人类学学报，10(1): 73—77。
赵树森，裴静娴，郭士伦等. 1985. 北京猿人遗址年代学研究. 见: 北京猿人遗址综合研究. 北京: 科学出版社，239—240。
原恩训，陈铁梅，高世华等. 1991. 周口店遗址化石树状系年代研究. 人类学学报，10(3): 189—193。
贾培华，金琳红，梁任华等. 1991. 北京猿人第一个头盖骨及其遗址堆积层年代的电子自旋共振测年研究. 人类学学报，10(2): 107—115。
Edwards R L，Chen J H，Wasserburg G J. 1986/ 87. $^{234}\text{U}/^{238}\text{U}$—$^{230}\text{Th}$ systematics and the precise measurement of time over past 500 000 years. Earth Planet Sci Lett, 81, 175—192。
PRELIMINARY RESULTS ON U-SERIES DATING OF PEKING MAN SITE WITH HIGH PRECISION TIMS

Shen Guanjun

(Department of Chemistry, Guizhou University, Guiyang 550025)

Teh-Lung Ku

(Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 USA)

Bassam Gahleb

(GEOTOP, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada)

Yuan Zhenxin

(Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, Beijing 100044)

Summary

The Peking Man site at Zhoukoudian in northern China presents one of the world's most important paleolithic site. A reliable chronology for the site is vital to our understanding of the physical evolution and cultural development of the human species.

Earlier efforts have provided the following time frame for the strata at the site: the bottom (13th) layer - ca. 700 ka, the lowest human fossil-containing (10th) layer - ca. 500 ka and the uppermost (1-3) layers - ca. 230 ka. However, on close examinations of the dating methods used in arriving at these age estimates, one finds that certain assumptions introduced, hence the reliability of the results, have remained problematical. Furthermore, sample BZC-3, taken from an intercalated travertine in Layers 1-2, has been reported recently to have a $^{230}\text{Th}/^{234}\text{U}$ age of 421 $^{+34}_{-30}$ ka, an age much older than the previous age assignment (Shen and Jin, 1993).

That relatively pure, compact and well-crystallized speleothem samples such as BZC-3 can be precisely dated and has been well documented. The large error limits quoted above result from the precision achievable by the α spectrometric measurements on samples of >350 ka of age. The newly developed thermal ionization mass spectrometric (TIMS) analyses of U and Th isotopes have promised to greatly reduce these error limits. With this promise in mind, we have
initiated a program of TIMS dating of Zhoukoudian speleothems in hopes of refining the chronology of the Peking Man.

We report here the preliminary results on the TIMS dating of sample BZC–3. The dating was done using the facilities at Centre de Recherche en Geochimie Isotopique et en Geochronologie (GEOTOP), University of Quebec at Montreal, Canada. Ultrasonically cleaned sample grains (~ 0.5 cm in size) of translucent calcites, free of visible porosity and detrital contaminants, were carefully hand-picked for TIMS analyses, following procedures adapted from Edwards et al (1986/87). The 233U-236U-238Th spike used was calibrated against a Precambrian uraninite standard (HU–1).

The age derived from the weighted mean of four measurements is 414 ± 13 ka. The integrity of BZC–3 as a closed–system is indicated by (1) the consistency within analytical error of 234U/ 238U and 230Th/ 234U in four subsamples (not homogenized aliquots); (2) the concordant 230Th/ 234U and 227Th/ 230Th dates measured by α spectrometry; and (3) the undetectable amount of $\^{14}$C in the sample as measured by accelerator mass spectrometry.

While supporting the 421 ka age reported earlier, the present more precise age of 414 ± 13 ka for BZC–3 points to a much greater age for the Zhoukoudian upper strata than previously thought. The No.5 skull of Peking Man, a representative of the youngest Homo erectus in China, was excavated just below these strata and has been assigned an age of 230 ka. It is mainly based on this age assignment that hypotheses have been formulated concerning a possible overlapping existence in China of two species of Homo (erectus and sapiens) and a possible slower evolution rate of Asian Homo erectus compared with their African counterparts. None of these hypotheses is supported by the present dating results that the youngest member of the Peking Man family should be at least 400 ka old.

The techniques of TIMS as applied to 230Th/ 234U dating have begun making significant impact on refining the Pleistocene chronology. As well, their capabilities have recently extended to the measurement of 231Pa. This paper represents the first attempt at TIMS dating of speleothem from an early paleolithic site. By careful search for suitable calcite samples from Zhoukoudian stratigraphic sequence and by stringent cross–checks between 230Th/ 234U and 231Pa/ 235U signals to be acquired by TIMS on such samples, we anticipate that temporal records of Zhoukoudian and other important early paleolithic cave sites can be deciphered with greater clarity than ever before.

Key words Peking Man site, Thermal ionization mass spectrometry (TIMS), Speleothem, U–series disequilibrium dating methods