藏猴（*Macaca thibetana*）皮纹的研究①

邓紫云 赵其昆 田云芬

中国科学院昆明动物研究所
（中国实验动物云南灵长类中心 灵长类学联合实验室 昆明 650107）

关键词 藏猴；皮纹；花纹类型；分类；进化

内容提要

四川省峨眉山的18只（♂：10；♀：8）及凉山彝族的19只（♂：7；♀：12）藏猴手足面上皮纹显示，该种的皮纹与其他猕猴属动物基本相同：其指趾端上的花纹几乎全是原始花纹；掌面上，大小鱼际主要为箕形和开放形花纹，指间1－Ⅳ区主要为斗形花纹；跖面上，大小鱼际及趾间1－Ⅱ区主要是箕形花纹，趾间Ⅲ－Ⅳ区主要是斗形花纹。左右端指间Ⅱ－Ⅳ区及趾间Ⅲ－Ⅳ区花纹分布有一定差异，性别之间在指间Ⅰ区有显著差异，两地猴则在掌面大鱼际－指及趾间Ⅰ区具（极）显著差异，可能与地理和社会隔离相关，趾间Ⅳ区的特征性 Da 花纹及弓形纹缺失似可作为藏猴皮纹的一个特征。

介绍

在我国特有的五种灵长类动物中，川金丝猴、滇金丝猴和台湾猴的皮纹已有过一些报

①收稿日期：1992-03-11
材料和方法

10 只雄性和 8 只雌性是四川峨眉山 1986 年间用于营业的照相猴；7 只雌性和 12 只雄性于 1989 年在四川凉山雷波县捕得。

本研究采用印泥印制法：印制皮纹前，先将印制部位擦洗干净，均匀地涂上红色印泥，再展平印制面压在白纸上，事后在纸面上进行分析。表 1 列出印制得的皮纹图样数。

表 1 藏猴皮纹印样数
Numbers of palms and plants printed

<table>
<thead>
<tr>
<th></th>
<th>峨眉组</th>
<th></th>
<th>凉山组</th>
<th></th>
<th>总数</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
</tr>
<tr>
<td>掌面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>左侧</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>右侧</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>躬面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>左侧</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>右侧</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

G—原始花纹
O—开放形花纹 (Open fields)
L—箕形花纹 (Loops)
D—双箕形花纹 (Double loops)
W—斗形花纹 (Whorls)
U—分类不明花纹 (Unclassed)

对各类花纹的说明见张耀平等 (1980)。依各花纹线路开口或旋转方向的不同，箕形、双箕形和斗形花纹有尺 (u)／腕 (l)／桡 (r)／腕 (t) 型；箕形花纹还有近 (p) 远 (d) 型；斗形花纹还有封闭 (o) 类型 (图 2)。此外，双箕形纹还有一个箕有些弓形 (arch) 的类型 (D)。图 3a)、半分支呈长条封闭状，内含 3～7 条长脊线的类型 (W)。图 3b) 等不同形式。

据 Ayer (1948)，将开放形花纹以数值 1 代表，箕形纹以 2 代表，双箕形纹和斗形纹以 3 代表，而分类不明花纹偏向前面何种类型则以相应数代表，由此计算出掌／趾面不同区域的平均花纹指数 (花纹强度值)。
图 1 掌 / 趾花纹部位图。f₁ 第一指 / 趾，f₂第二指 / 趾，f₃ 第三指 / 趾，f₄第四指 / 趾，f₅第五指 / 趾，I 指 / 趾间 I 区，II 指 / 趾间 II 区，III 指 / 趾间 III 区，IV 指 / 趾间 IV 区，T 大鱼际，H 小鱼际，Hp 近侧小鱼际，Hd 远侧小鱼际。（Positions of palmar and plantar patterns, f₁ the first finger / toe, f₂ the second finger / toe, f₃ the third finger / toe, f₄ the fourth finger / toe, f₅ the fifth finger / toe, I the first interdigital pattern, II the second interdigital pattern, III the third interdigital pattern, IV the fourth interdigital pattern, T thenar, H hypothenar, Hp proximal hypothenar, Hd distal hypothenar.）

图 2 花纹分类图(Classificate illustration of patterns)
图 3 两种特殊花纹—Da 和 W₁ (Two special patterns—Dₐ and W₁)

结 果

1. 指／趾端花纹
指／趾端花纹较单纯，除了一只雌性左掌第一指具有分类不明的花纹外，其余 344 个 (99.71%) 指端和 350 个 (100%) 趾端的花纹全为原始花纹。

2. 掌面花纹
在掌面的七个花纹区上 (图 1a) 共观察到五种花纹类型：开放、箕形、双箕形、斗形和分类不明花纹。其中箕形纹有 Lₐ、L₈ 和 L₉ 三种形式；双箕形纹只有 D₁ 形式；斗形纹有 W₀、W₈ 和 W₁ 形式。还有些斗形纹由于纹线的不连续性，同一个图样中，纹线既有向尺侧又有向桡侧旋转的，还有纹线方向难于判别的，统作为 W* 形式。峨眉山和凉山藏猴掌面花纹类型的百分比值分别见表 2-1、2-2。
掌面大小鱼际上以箕形纹和开放形花纹为主，而指间 I—IⅣ区斗形纹居多。

3. 跖面花纹
跖面的六个花纹区 (图 1b) 上有四类花纹：开放形、箕形、双箕形和斗形。跖面花纹定形类型虽不及掌面多，但花纹路走向较复杂，细微变化形式比掌面多，跖面上箕形纹有向胫、腓、远、近侧等全部四个方向开口的情况，双箕形纹有 D₁、D₂ 和 D₉ 三种形式。斗形纹有 W₀、W₈、W₁ 和 W₁ 四种形式。两组藏猴跖面花纹分布百分比见表 3-1、3-2。跖面上，大小鱼际及趾间 I—IⅣ区多为箕形纹，而趾间Ⅲ—IⅣ区多为斗形纹。W₁ 花纹只见于峨眉山雄性的趾间 I 区。D₉ 花纹则分布在两组和两性中的趾间 IV 区上。
表 2-1 峨眉山组藏猕掌面皮纹类型分布百分比

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>L_α+L_β+L_γ</th>
<th>D_γ</th>
<th>W</th>
<th>W_α</th>
<th>W_β</th>
<th>W_γ</th>
<th>W^*</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>近侧小鱼际</td>
<td>右</td>
<td>0 0 85.7 80.0 0 10.0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0 0 0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>远侧小鱼际</td>
<td>右</td>
<td>100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大鱼际</td>
<td>右</td>
<td>42.9 50.0 57.1 50.0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>83.3 55.6 16.7 44.4 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>指间 I 区</td>
<td>右</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>指间 II 区</td>
<td>右</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>指间 III 区</td>
<td>右</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>指间 IV 区</td>
<td>右</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：*代码见材料和方法。
表 3-1 峨眉山组猕猴趾面皮纹类型分布百分比

Percentages of plantar patterns in the Emei group of Tibetan macaques

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>L₁+L₉</th>
<th>D</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>Ω</td>
<td>Δ</td>
<td>Ω</td>
</tr>
<tr>
<td>小鱼际</td>
<td>右</td>
<td>42.9</td>
<td>60.0</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>60.0</td>
<td>100.0</td>
</tr>
<tr>
<td>大鱼际</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>14.3</td>
<td>10.0</td>
<td>57.1</td>
</tr>
<tr>
<td>趾间 I 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>10.0</td>
<td>42.9</td>
</tr>
<tr>
<td>趾间 II 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>趾间 III 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>14.3</td>
</tr>
<tr>
<td>趾间 IV 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

注：* 代码见材料和方法。

表 3-2 凉山组猕猴趾面皮纹类型分布百分比

Percentages of plantar patterns in the Liang group of Tibetan macaques

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>L₁+L₉</th>
<th>D</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>Ω</td>
<td>Δ</td>
<td>Ω</td>
</tr>
<tr>
<td>小鱼际</td>
<td>右</td>
<td>41.7</td>
<td>14.3</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>27.3</td>
<td>16.7</td>
<td>72.7</td>
</tr>
<tr>
<td>大鱼际</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>72.7</td>
</tr>
<tr>
<td>趾间 I 区</td>
<td>右</td>
<td>16.7</td>
<td>14.3</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>18.2</td>
<td>0</td>
<td>81.8</td>
</tr>
<tr>
<td>趾间 II 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>趾间 III 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>9.1</td>
</tr>
<tr>
<td>趾间 IV 区</td>
<td>右</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>左</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

注：* 代码见材料和方法。

4.花纹分布的比较

开放形纹(O)，箕形纹(L)，双箕形纹的三种形式(D₁₁，D₁₂，D₁₂)，斗形纹的四种形式(W₁，W₂，W₃，W₄)和分类不明花纹(U)在左右侧，两性以及两组间分布的差异检验(X²)显示：(1) 左右：仅指间Ⅱ一Ⅳ区和趾间Ⅲ一Ⅳ区存在差异(表 4)。(2) 雌雄：在十三
个部位中，仅在指间 I 区两性存在差异(P < 0.05, D.F. = 3)。3组间：掌跖面十三个花纹区中的三个花纹分布有组间差异，即掌面大鱼际(P < 0.05, D.F. = 1), 指间 I 区 (P < 0.05, D.F. = 3) 和趾问 I 区(P < 0.01, D.F. = 4)。

表 4 藏猴左右侧掌 / 跖面花纹类型频率分布卡方检验

<table>
<thead>
<tr>
<th>花纹区</th>
<th>性别</th>
<th>卡方值(X²)</th>
<th>自由度(D.F.)</th>
<th>概率(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>近侧小鱼际</td>
<td>♂</td>
<td>2.00</td>
<td>2</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>1.88</td>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>远侧小鱼际</td>
<td>♂</td>
<td>0.03</td>
<td>1</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.03</td>
<td>1</td>
<td>0.86</td>
</tr>
<tr>
<td>大鱼际</td>
<td>♂</td>
<td>0.45</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.05</td>
<td>1</td>
<td>0.82</td>
</tr>
<tr>
<td>掌</td>
<td>♂</td>
<td>1.80</td>
<td>3</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.01</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>指间 I 区</td>
<td>♂</td>
<td>29.80</td>
<td>3</td>
<td>• •</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>15.39</td>
<td>3</td>
<td>• •</td>
</tr>
<tr>
<td>指间 II 区</td>
<td>♂</td>
<td>24.04</td>
<td>3</td>
<td>• •</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>11.79</td>
<td>3</td>
<td>• •</td>
</tr>
<tr>
<td>指间 III 区</td>
<td>♂</td>
<td>15.38</td>
<td>2</td>
<td>• •</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>11.06</td>
<td>2</td>
<td>• •</td>
</tr>
<tr>
<td>指间 IV 区</td>
<td>♂</td>
<td>1.76</td>
<td>1</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.04</td>
<td>1</td>
<td>0.84</td>
</tr>
<tr>
<td>大鱼际</td>
<td>♂</td>
<td>1.42</td>
<td>3</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>3.00</td>
<td>3</td>
<td>0.39</td>
</tr>
<tr>
<td>趾间 I 区</td>
<td>♂</td>
<td>2.01</td>
<td>4</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>1.34</td>
<td>3</td>
<td>0.72</td>
</tr>
<tr>
<td>趾间 II 区</td>
<td>♂</td>
<td>0.03</td>
<td>1</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.03</td>
<td>1</td>
<td>0.86</td>
</tr>
<tr>
<td>趾间 III 区</td>
<td>♂</td>
<td>9.95</td>
<td>3</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>9.00</td>
<td>3</td>
<td>•</td>
</tr>
<tr>
<td>趾间 IV 区</td>
<td>♂</td>
<td>12.92</td>
<td>3</td>
<td>• •</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>10.26</td>
<td>2</td>
<td>• •</td>
</tr>
</tbody>
</table>

* P < 0.05 • • P < 0.01

5.花纹强度

指／趾间 II～IV区花纹强度值最高，指／趾间 I～II 区次之，鱼际通常较低。

<table>
<thead>
<tr>
<th>掌</th>
<th>远侧小鱼际</th>
<th>大鱼际</th>
<th>近侧小鱼际</th>
<th>指间 I 区</th>
<th>指间 II 区</th>
<th>指间 III 区</th>
<th>指间 IV 区</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>1.26</td>
<td>2.03</td>
<td>2.97</td>
<td>2.97</td>
<td>3.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>趾</th>
<th>小鱼际</th>
<th>趾间 II 区</th>
<th>趾间 I 区</th>
<th>大鱼际</th>
<th>趾间 III 区</th>
<th>趾间 IV 区</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.61</td>
<td>2.00</td>
<td>2.01</td>
<td>2.27</td>
<td>2.96</td>
<td>3.00</td>
</tr>
</tbody>
</table>
讨论

与所有新大陆猴和旧大陆猴一样，猕猴的指端皮纹几乎都是原始花纹。这一点是猴子与猿和人类大不相同的地方(Iwamoto,1964)。

就掌跖其他部位的花纹而言，一般猕猴属动物在掌面远侧小鱼际上很少形成开放形纹以外的定型花纹(true pattern)(Cummins, 1961)。猕猴则100%为开放形纹；和Iwamoto(1964)、Meier(1973)、张耀平等(1980)一致，掌面近侧小鱼际和大鱼际上以箕形纹和开放形花纹为主；趾间1区上有的作者观察到以箕形纹为主，还有部分双箕形纹和斗形纹。本研究的结果和Furuya(1962)一致：趾间Ⅰ-IV区以斗形纹为主。

猕猴趾间Ⅰ-Ⅳ区趾间Ⅰ-Ⅲ区的纹路方向有显著差异：左侧横/肢侧旋转的斗形纹较多，而右侧横/肢侧旋转的斗形纹较多。同样的情况也见于猕猴(Meier,1973)和日本猕猴(Iwamoto,1964)。即使在人类也有类似两侧具更多两侧旋转花纹的现象，只是现在还不明白这种差异的意义(Iwamoto, 1964)。

总的说来，猕猴两性间皮纹差异不大，只在趾间Ⅰ区因雄性有一定比例的双箕形纹而雌性无此类型而测得某种差异。值得注意的是，日本猕猴也有过在该区显示雌雄差异的报道：雄性有11.83%的斗形纹和24.70%的双箕形纹，而雌性这两种花纹分别为7.14%和9.52%(Iwamoto,1964)。猕猴雄性则在掌面大鱼际观察到较多箕形纹，而雌性具较多开放形花纹的描述(Meier,1973)，或者找不到任何差异(张耀平等，1980)。

猕猴趾间有一定比例的，其它灵长类的文献中尚无记述的D和W1类型，而猕猴属动物趾间Ⅳ区常有的弓形纹(Furuya,1962)却没有在37只猕猴的70个Ⅳ区上找到，这或许是猕猴皮纹的一个特征。

猕猴属动物雄性个体在进入交配系统之前要离开出生群，而且不止一次进入新的交配系统(Pusey & Packer,1987)。雄猴群间转移在曾受到人为破坏(捕杀)的峨眉山种群遵循非随机转移模式：即有进入成年性比(雌/雄)大的群、邻群和已经接受了同群成员的猴群的明显趋势。与此有关，日本猕猴食蟹猕猴群基因相似程度较之相隔100公里以上的种群间基因相似程度高(Nozawa et al., 1982; Kawamoto et al.1984)。峨眉山和凉山雷波县相距在200公里以上，两地猕猴皮纹的差异(掌跖而十三个分区中的三个有显著差异)应归因于两种群间的地理的、进而是社会的隔离。

一般认为，同属动物中，皮纹花纹强度高者向侧栖，反之向侧栖。猕猴花纹强度在平顶猴和猕猴之间，接近日本猕猴(Meier,1973)。按理，猕猴的栖栖倾向应比猕猴为弱。基于对猕猴行为空间分布(Zhao et al.,1989; Zhao et al., 1991)和一般行为观察的结果，作者曾把该种所创下的大体重记录与其食性和地栖倾向加以联系。看来，在缺少能比较的位置行为(positional behavior)和运动学(kinemtatics)定量数据条件下，讨论猕猴属动
物的树-地栖倾向与皮纹花纹强度的关系还为时过早。

感 谢

本工作为中国科学院青年基金资助课题，本文在写作过程中，得到彭燕章和叶智彰教授的帮助，谨此致谢。

参考文献

王岐山、熊成培。1989。短尾猴黄山鱼鳞坑群四季巢区的研究。兽类学报，9：239—246。

叶智彰等。1985。猕猴解剖。科学出版社，北京。

张耀平等。1980。猕猴(Macaca mulatta)皮纹的研究。动物学研究。1：287-294。

张耀平等。1981。金丝猴解剖。川金丝猴和滇金丝猴的皮纹。动物学研究。2：199-203。

俞发宏等。1989。藏酋猴与猕猴长骨生长的比较研究。动物学研究。10(Sup.)：11-18。

熊成培。1984。短尾猴的生态研究。兽类学报。4：1-9。

熊成培、王岐山。1988。短尾猴栖息地的季节变化。兽类学报。8：176-183。

DERMTOGLOSSICS OF TIBETAN MACAQUES

MACACA THIBETANA

Deng Ziyun Zhao Qikun Tian Yunfeng

(Joint Laboratory of Primatology, KIZ & YNIPC, Kunming, Yunnan 650107)

Key words Macaca thibetana; Dermatoglyphics; Print patterns; Classifications; Evolution

Abstract

Dermatoglyphics study of Tibetan macaques was taken from 37 individuals from Mt. Emei (10 females and 8 males) and Leibo County (7 females and 12 males), Sichuan. The prints were very similar to those reported for other species of the genus. The finger—and—toe—tip prints were almost the primitive; in the palm, the prints were chiefly the loops (L) and open fields on the thenar (T) and hypothenar (H) and whorls (W) on the interdigitalis I—IV; in the sole, the prints were mainly L on T, H and I—II, and W on III—IV. There were some differences in palm II—IV and sole III—IV between the left and the right. The patterns of interdigital I in the palm significantly differed in males and females. Compared with other species, it is worth noting that the appearance of double arches and the absence of the arch in sole IV. Difference between the two sample groups was specified in T in palm, and I in both palm and sole, which may be related to the geographic isolation.