国人颅骨颈动脉管外口及其周围某些结构的形态观察与测量

郑孙谦
（武汉体育学院人体解剖教研室）

关键词 颅骨；颈动脉管；形态

内 容 提 要

本文对国人颅骨 133 例，266 个颈动脉管外口形状大小进行了观察与测量。结果表明：颈动脉管外口形状不一，可区分为圆形、卵圆形和南瓜子仁形三种，其中以圆形者为数最多。颈动脉管外口长宽径和距颈静脉窝及椎体尖端之间距离两侧不等，并具有地区性差异。鼓小管下口在个别颅骨不显。颈静脉窝之大小深浅不一，其中以右侧较大而深者为最多。

一、前 言

关于人类颅骨的孔、窦、管、沟、裂的形状大小及其周围的某些结构的变异，多数已有专题研究报道。由于颈动脉管外口的形态观察和测量，鼓小管下口的出现率及颈静脉窝的形态，迄今在国内尚未见到专题报道。因此，我们为了开展国人骨骼人类学的研究，丰富国人体质调查资料，对本题进行了研究。现将观察和测量结果提出报告，以供人类学和人体解剖学工作者参考。

二、材料和方法

本文研究材料系采用我们实验室在湖北省武汉地区收集的颅骨（下称 F 组）49 个和吉林省长春地区收集的颅骨（下称 G 组）84 个，共计 133 个完整的成人颅骨（未分性别），

![图 1 颈动脉管外口的形状](http://www.cnki.net)
均无病态或变形。研究内容分为以下五项：（一）颈动脉管外口的形状观察。（二）颈动脉管外口的长径与宽度（长径为从外口的前缘中点至后缘中点之距离，宽度为侧取外口两侧缘间最宽处的距离）。（三）颈动脉管外口距颈静脉窝（为从外口后缘中点至静脉窝前缘中点）与椎体尖端之间距离（为从外口内缘至锥体前内侧部据此点中点）。测量工具是精密度为 0.1 毫米的游标卡尺，将测量所得数值进行统计学处理。（四）对国人不同地区所收集颅骨的颈动脉管外口各径作比较。（五）对鼓小管下口的出现率及颈静脉窝的形态进行观察。

三、观察与测量结果及讨论

1. 颈动脉管外口的形状

颈动脉管外口（apertura externa canalis carotic）位于颅骨锥体底面的后外侧部。根据 133 个成人颅骨的 266 个颈动脉管外口的形状可区分为三种：圆形、卵圆形及瓜子仁形（图 1）。其左、右侧的出现率及百分率均不相同，见表 1。

<table>
<thead>
<tr>
<th>形状</th>
<th>左侧</th>
<th>右侧</th>
<th>左侧</th>
<th>右侧</th>
<th>两侧</th>
<th>百分率</th>
<th>左侧</th>
<th>右侧</th>
<th>两侧</th>
<th>百分率</th>
</tr>
</thead>
<tbody>
<tr>
<td>圆形</td>
<td>67</td>
<td>50.3</td>
<td>61</td>
<td>45.8</td>
<td>49</td>
<td>36.8</td>
<td>17</td>
<td>12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>卵圆形</td>
<td>39</td>
<td>29.3</td>
<td>51</td>
<td>38.3</td>
<td>31</td>
<td>23.3</td>
<td>13</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>瓜子仁形</td>
<td>27</td>
<td>20.3</td>
<td>21</td>
<td>15.7</td>
<td>13</td>
<td>9.7</td>
<td>10</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

从上表可以看出：颈动脉管外口的形状以圆形为最多、卵圆形次之，它并非象某些教科书中所记载的那样全是圆孔。同时，颈动脉管外口的形状和大小与一般颅形之间的关系不甚明显。

2. 颈动脉管外口的长径与宽度

长径 最大值左、右侧为 8 毫米；最小值为 4 毫米；平均值右侧为 6.03 毫米，左侧为 6.05 毫米；标准差右侧为 0.797 毫米，左侧为 0.815 毫米；标准误右侧为 0.067 毫米，左侧为 0.071 毫米。

宽径 最大值左、右侧为 11 毫米；最小值右侧为 5 毫米，左侧为 4 毫米；平均值右侧为 7.99 毫米，左侧为 8.06 毫米；标准差右侧为 1.131 毫米，左侧为 1.153 毫米；标准误右侧为 0.098 毫米，左侧为 0.100 毫米（表 2）。

3. 颈动脉管外口距颈静脉窝与椎体尖端之间距离

距离颈静脉窝 最大值右侧为 7 毫米，左侧为 5 毫米；最小值左、右侧相等，为 0.5 毫米；平均值右侧为 1.31 毫米，左侧为 1.66 毫米；标准差右侧为 0.895 毫米，左侧为 0.984 毫米；标准误右侧为 0.078 毫米，左侧为 0.085 毫米。其原因是由于颈动脉管外口与颈静脉窝之间的唾腺膜或骨小窝大小有关。

距离椎体尖端 最大值右侧为 19 毫米，左侧为 18 毫米；最小值右侧为 8 毫米，左侧
为7毫米；平均值右侧为13.53毫米，左侧为14.05毫米；标准差右侧为2.050毫米，左侧为2.172毫米；标准误右侧为0.178毫米，左侧为0.188毫米（表2）。这与颞骨锥体尖端长短有关，同时也说明人颅骨的两侧是不完全对称的。

表2 国人颈动脉管外口长宽径与距颈静脉窝及锥体尖端之间距离测量统计（133例）
（单位：毫米）

<table>
<thead>
<tr>
<th>测量项目</th>
<th>总例数</th>
<th>侧别</th>
<th>最大值</th>
<th>最小值</th>
<th>平均值</th>
<th>标准差</th>
<th>标准误</th>
</tr>
</thead>
<tbody>
<tr>
<td>长径</td>
<td></td>
<td>右</td>
<td>8</td>
<td>4</td>
<td>6.03</td>
<td>0.797</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>左</td>
<td>8</td>
<td>4</td>
<td>6.05</td>
<td>0.815</td>
<td>0.071</td>
</tr>
<tr>
<td>宽径</td>
<td>133</td>
<td>右</td>
<td>11</td>
<td>5</td>
<td>7.99</td>
<td>1.131</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td></td>
<td>左</td>
<td>11</td>
<td>4</td>
<td>8.06</td>
<td>1.153</td>
<td>0.100</td>
</tr>
<tr>
<td>距离颈静脉窝</td>
<td></td>
<td>右</td>
<td>7</td>
<td>0.5</td>
<td>1.31</td>
<td>0.895</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>左</td>
<td>5</td>
<td>0.5</td>
<td>1.66</td>
<td>0.984</td>
<td>0.085</td>
</tr>
<tr>
<td>距离锥体尖端</td>
<td></td>
<td>右</td>
<td>19</td>
<td>8</td>
<td>13.53</td>
<td>2.050</td>
<td>0.178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>左</td>
<td>18</td>
<td>7</td>
<td>14.05</td>
<td>2.172</td>
<td>0.188</td>
</tr>
</tbody>
</table>

4. 国人不同地区颈动脉管外口长宽径与颈静脉窝及锥体尖端间距离比较

根据对湖北武汉地区收集49例和吉林长春地区收集84例左侧、右侧颈动脉管外口长宽径与颈静脉窝及锥体尖端之间距离测量结果（表3），经t值检验，发现有地区性差异，如长春组左侧颈动脉管外口长径大于武汉组，t值2.16 > 1.98，p < 0.05；长春组左侧颈动脉管外口长径大于武汉组，t值2.02 > 1.98，p < 0.05；颈动脉管外口距离颈静脉窝武汉组右侧大于长春组，t值3.39 > 2.62，p < 0.01。

综上所述可以看出，颈动脉管外口长宽径长春组左侧大于武汉组，同时也说明颈动脉口径要略大于武汉组。此外，颈动脉管外口与颈静脉窝之间的相对小窝形态一般武汉组右侧大于长春组。

5. 对鼓小管口的出现率与颈静脉窝的形态观察

鼓小管口（apertura inferior can. tympanici）是位于颈动脉管管口的内小孔，有舌咽神经副交感支及咽升动脉的副交感支通过。Тонков，V.Н.认为“颈静脉窝与颈动脉管外口之间的角上，有时有一可辨认的岩小窝，其底有鼓小管下口”。我们参照其上的论述就其133例颅骨的鼓小管口进行了观察，结果发现左、右侧出现率为122例，占91.7%；右侧不存在者为4例，占0.3%；左侧不存在者为7例，占0.5%。以上说明鼓小管下口绝大部分存在，但在个别颅骨中如。

颈静脉窝（fossa jugularis）位于颈动脉管外口的后侧，为一深窝（内容纳颈静脉上球），是构成颈静脉孔的前界及外侧界。关于颈静脉窝之大小、深浅，据观察结果是：右侧较大而深者为115例，占86.5%，较小者为18例，占13.5%；左侧较大而深者为24例，占18%，较小者为109例，占82%。左右两侧大小相等者为15例，占11.3%；不等者为118例，占88.7%。由此可知，颅骨颈静脉窝大小左右侧绝大部分是不相等的，且右侧大于左侧为多。

究其原因，我们认为这与颅内静脉起始处颈静脉上球位于右侧颈静脉窝内比左侧为膨大

有关，致使右侧颈静脉窝也随之宽广，但与此相反的左侧也可见到。

四、小 结

本文作者就在湖北武汉地区和吉林长春地区收集的完整颅骨 133 例，对 266 个颈动脉管外口及其周围某些结构进行了观察与测量，得出了以下结果：

1. 颈动脉管外口的形状可分为三种：(1)圆形、(2)卵圆形、(3)三角形喙状。其中以圆形者为数最多，占 50.3%。但并非如某些教科书中所记载的那样全为圆形。

2. 颈动脉管外口长径：最大值左右侧相等，为 8 毫米；最小值为 4 毫米；平均值右侧为 6.03 毫米，左侧为 6.05 毫米。宽径：最大值左右侧相等为 11 毫米；最小值右侧为 5 毫米，左侧为 4 毫米；平均值右侧为 7.99 毫米，左侧为 8.06 毫米。

3. 从两个不同地区所收集到的两组颅骨的颈动脉管外口作比较，有差异性。 两组长春之左颅动脉管外口长径大于武汉组，t 值 2.16 > 1.98，p < 0.05; 长春之右侧颈动脉管外口宽径大于武汉组，t 值 2.02 > 1.98，p < 0.05; 颈动脉管外口距离颈静脉窝，武汉组右侧要大于长春组，t 值 3.39 > 2.62，p < 0.01。

4. 鼓小管下口两侧同时出现之有 122 例，占 11.7%。但在个别颅骨缺如。右侧不存在为 4 例，占 0.3%；左侧不存在为 7 例，占 0.5%。

5. 颈静脉窝之大小深浅不一。两侧大小相等者为 15 例，占 11.3%；不等者为 118 例，占 88.7%；其中以右侧较大而深者为最多，约为 115 例，占 86.5%。

(1982 年 4 月 27 日收稿)
MORPHOLOGICAL OBSERVATIONS AND MEASUREMENTS OF THE EXTERNAL APERTURE OF CAROTID CANAL AND SURROUNDING STRUCTURES IN CHINESE SKULLS

Zheng Sunqian

(Department of Anatomy, Wuhan Physical Education College)

Key words Skull; Carotid canal; Morphology

Abstract

From Changchun and Wuhan regions, the writer collected two groups of 133 intact Chinese skulls, of which careful observations and measurements of the external apertures of the carotid canals and surrounding structures have been made. The results are as follows:

1. The form of the external aperture can be divided into three types: circular, oval and the form of a pumpkin seed. The circular form, accounting for 50.3% is the commonest form, this result does not agree with the statement described in some textbooks.

2. The lengths of the external aperture range from 4 to 8mm. The average value is 6.03 mm on the right and 6.045 mm on the left. Its maximum length is equal on both sides (8 mm). Widths ranges from 4—11 mm. The average is 7.99 mm on the right and 8.06 on the left. The maximum width is the same on both sides (11 mm), while the minimum is 5 mm on the right and 4 mm on the left.

3. By comparision, the regional difference between the two groups of the skulls is significant statistically, e.g. in Changchun group the external aperture of carotid canal on the left side is longer and wider than those in wuhan group (t 2.16 > 1.98, p < 0.05 and t 2.02 > 1.98, p < 0.05 respectively). while on the right side, the distance between the aperture and jugular fossa is much longer in wuhan group than those in Changchun (t 3.39 >2.62, p < 0.01).

4. The inferior apertures of tympanic canaliculus occur bilaterally in 122 skulls (91.7%), and it is absent in a few skulls. It does not appear on right side of four skulls (0.3%), and on the left side of seven skulls (0.5%).

5. The jugular fossae vary in size and depth. 118 skulls (88.7%) are unequal on both sides. 115 skulls (86.5%) have a larger and deeper fossa on the right side. In 15 skulls (11.3%) they are equal on both sides.